

M-22/Greilickville Commercial Corridor Traffic Study Elmwood Charter Township, Michigan

Prepared for:

Charter Township of Elmwood
10090 E. Lincoln Road
Traverse City, MI 49684

Prepared by:

Progressive AE
18114 Mile Road NE
Grand Rapids, MI 49525

The Charter Township of Elmwood and Progressive AE would like to thank the many interested citizens, landowners, business owners, public officials, and agency staff that provided input at the public open house and stakeholder meetings, and in particular MDOT staff for their timely and key feedback throughout the study process.

July 2016
Project No. 73200001/002

Table of Contents

Executive Summary1

1. Introduction 4
2. Existing Conditions 7
Existing Traffic Conditions 7
Existing Access System Conditions 12
3. Projected Future Traffic Conditions 15
Development Trip Generation 15
Projected Trip Distribution 16
Evaluation of Future Conditions. 16
Discussion - Potential 2026 Roadway Improvements 17
Pedestrian/Non-motorized Improvements 24
4. Access Management Standards and Recommendations 26
Access Management Standards 26
Access Management Recommendations 31
5. Conclusions 37
Appendices

List of Figures and Tables

Figure 1 Existing Traffic Conditions. 9
Figure 2 Projected Development Peak-Hour Traffic Distribution 17
Figure 3 Projected Traffic Conditions June 2026 18
Figure 4 M-22 Access Management Recommendations - North Half 33
Figure 5 M-22 Access Management Recommendations - South Half 35
Table 1 Projected Developments' Peak-hour Trip Generation 16
Table 2 Signal Warrant Volume Summary 21
Table 3 Minimum Driveway Spacing 29

Executive Summary

The M-22/Greilickville Commercial Corridor Traffic Study encompasses a little over a mile of $\mathrm{M}-22$ in the southeastern portion of Elmwood Township. Its limits are essentially defined by Cherry Bend Road to the north and the southern township/county line to the south.

M-22 within the study area has long tried to fully serve two key functions; as regional arterial to move through traffic to/from communities to the north and south, and to provide direct access to the many Greilickville commercial and recreational sites along its frontage. As a follow up to the 2013 Greilickville Commercial Corridor Sub-Area Master Plan (2013 Corridor Master Plan) effort, this study was undertaken to further define what type of transportation opportunities and constraints that existing now and what those may be ten years from now in 2026. Of key importance was to try to identify improvements that would provide a more efficient and safer
 environment for corridor study patrons to access and egress existing and future uses, and for pedestrians to cross M-22 at several points.

The study process included pre-study discussions with the Township and MDOT to refine study goals and criteria. During the study several stakeholder meetings were held including a public presentation to discuss and obtain feedback on preliminary findings and recommendations.

After the introductory Chapter 1 of this report, Chapter 2 focuses on the existing traffic and access management conditions along the study area of $\mathrm{M}-22$. Findings and short term recommendations resulting from the existing (June) conditions analysis include:

- During pre-summer peaks most of the corridor intersections operate acceptably during both the morning and afternoon peak hours;
- As might be expected, the exception is the $\mathrm{M}-22 / \mathrm{M}-72$ intersection that experiences significant delay on at least two of its movements during both peak hours;
- In the short term a recommended improvement to that intersection would be to add a second northbound left-turn lane and revise the signal operations;
- Regarding current access management conditions, several locations and roadway sections were found to have very poor commercial access spacing or driveway design/depth, fairly typical of older commercial zones on state trunklines within the state; and
- Of particular concern to the Township and several stakeholders is the study area adjacent to the Elmwood Marina where traffic on M-22 creates significant delays for vehicles trying to leave the marina.

Chapter 2 also briefly discusses observed peak hour conditions during a "normal" summer weekday (mid-August) when no nearby festivals were occurring. Those observations indicated just how different that short July-August 2015 period is from even June 2015 conditions.

Chapter 3 analyzes and discusses potential improvements for projected 2026 conditions. Findings and recommendations from that set of analyses, plus input from the stakeholders and public include:

- A trip generation analysis indicated that future projected development within the corridor study area can be expected to generate approximately 300 new morning peak hour trips and close to 800 new afternoon peak hour trips;
- Projected growth of M-22 traffic volumes along the corridor by 2026 from noncorridor study area sources are projected to increase through traffic by approximately 250-300 vehicles during peak hours;
- With that traffic added, most of the study area intersections will have one or more movements that experience significant
 delays;
- Although a traffic signal or roundabout may be warranted at one or more locations at that time, $\mathrm{M}-22$ would need to be widened to four-five lanes to allow those intersections to operate acceptably;
- Preliminary analyses indicate/suggest that significant reconstruction of the M-22/M-72 intersection will be needed to accommodate even projected 2026 June traffic volumes
- Several access management improvement recommendations were defined on report graphics, most of which are focused on closing or relocating/combining poorly spaced commercial driveways or defining the general location for shared rear service drives; and
- Several potential locations were defined for placing raised mid-block pedestrian island crossings to facilitate safer crossings along the corridor study area.

Chapter 4 provides background on the reasons why so many road agencies, including MDOT, value the application of access management standards, and it summarizes the additional roadway improvements or measures that should be jointly pursued under that umbrella. Those measures include development of service drives, closure and/or relocation of existing driveways, and essentially creating a safer section of roadway by eliminating conflict points where feasible.

Overall, one related improvement idea that came up during the study process, although not covered by the scope of this study or report, was the potential for re-alignment of $\mathrm{M}-22$. As envisioned, the primary goal of such a significant undertaking would be to separate the high through traffic volume from the local business/recreational traffic within the Greilickville study area. The potential start and endpoints of this alternative route could be near Grandview Road at the north end and near Carter Road at the south end. However, it is generally understood that this type of improvement would likely have to be funded solely by the community.

1. INTRODUCTION

As a key part of the community's ongoing short and long term planning process, the Charter Township of Elmwood completed the 2013 Corridor Master Plan that included recommendations for several significant transportation elements. Many of the future recommendations noted in the plan are specifically related to $\mathrm{M}-22$ and how it may be improved to enhance its use for all users. Therefore, as a follow-up to those initial conceptual recommendations, the Township and MDOT recognized that a set of corridor analyses needed to be completed to help define projected future conditions and identify potential transportation opportunities along this largely commercial study area within the township.

Although the primary focus of this study was on M-22 (from Cherry Bend Road down to M-72), the general waterfront corridor area defined by the 2013 Corridor Master Plan was taken into account, especially as it relates to potential side street relocations/re-alignments and projected future development or redevelopment. The primary goal was to determine how best to provide a much improved multi-user environment within this commercial and recreational hub while still recognizing its importance as a key through route for communities further north on the Leelanau Peninsula.

Based upon multiple discussions with Township staff, MDOT staff, and many stakeholders, the primary sets of analyses completed for this
 corridor study were as follows:

- Identify empirically what the current peak hour traffic conditions are during a relative peak period (June 2015);
- Use projected future land use data and other growth factors to calculate what the peak hour traffic volumes may be by 2026;
- Identify what type of roadway improvements may be necessary to accommodate those 2026 volumes, while recognizing the need to promote/enhance a multi-modal and pedestrian environment; and
- Review current access management conditions and develop a set of preliminary access improvements to make the corridor study area safer and more efficient.

The tasks undertaken to complete the analyses include:

1. Data Collection. Applicable information regarding the existing operating conditions of the study area roadways was obtained. Morning and afternoon peak-hour turning movement counts were completed at the study area intersections. Also, 24-hour approach counts were completed at the M-22 intersections with Grandview Road and Carter Road. Information regarding lane configurations, speed limits, traffic controls, and other related data for the study area roadways was also collected. Those on-site recon efforts also included taking field notes regarding existing site access conditions.
2. Background Growth. Per discussions with MDOT staff, an annual background traffic growth rate of 1.5 percent was applied to existing volumes to reflect anticipated nondevelopment traffic increases by the 2026 horizon year.
3. Crash Review. Recent crash data was collected and reviewed to help define any specific crash patterns that could be address by improvements measures.
4. Trip Generation/Distribution. Based upon potential future development data obtained from the Township, the number of trips the potential developments are expected to generate during peak hours was identified. These trips were then assigned to $\mathrm{M}-22$ and the applicable adjacent study area roadways based upon the patterns followed by existing traffic and expected market area.
5. Levels of Service. Capacity calculations were completed at the study area key intersections to identify existing and expected future peak-hour operational characteristics.
6. Stakeholder/Public Meetings. Several stakeholder meetings and a public presentation were attended to glean additional input and feedback on key concerns and reaction to preliminary findings.
7. Improvements Recommendations. Roadway/intersection, access, and pedestrian crossing improvements were identified that will help enable the corridor study area intersections to retain acceptable levels of operation under future conditions upon the addition of background traffic growth and projected development traffic.

Why Access Management?

One of the key elements of this corridor study is development of an access management plan. Successful implementation of the recommendations in the plan will help Elmwood Township and MDOT accommodate planned redevelopment or development along the corridor study area while reducing the negative impact on traffic flow and crash potential. Ongoing national experience continues to show that a proliferation of driveways or an uncontrolled driveway environment increases the number of crashes, severely reduces capacity of the roadway, and may create a need for costly road improvements in the future. Areas where access management plans have been adopted and followed by the communities and road agencies have typically resulted in 25-50 percent reductions in access-related crashes. Further, reductions in the number of access points can provide better or more opportunities for non-motorized system improvements, like the mid-block crossings discussed later in this report.

The following chapters outline the results of the analyses completed during this study.

2. EXISTING CONDITIONS

Defining the current access and traffic conditions along the length of the corridor study area is one of the key initial tasks when developing an overall corridor plan. This section of the report outlines the existing traffic and access conditions along M-22. These existing, or base, conditions then provide a comparison to subsequent future conditions analyses. This chapter starts with a discussion focused on traffic conditions, followed up by a discussion largely focused on current access system conditions.

One key element that was much discussed at the outset of this study was the choice of analysis period - June 2015 in this case. There were concerns that analyses based upon June traffic volume data would not reflect actual peaks that are experienced later in the summer. However, it is not uncommon for a roadway agency (MDOT or others) to focus more on relatively peaks, as those are the conditions (or better) that are experienced during the vast majority of the year. Given typical funding constraints, defining conditions and identifying improvements based upon the highest volumes in a year is often not seen as a prudent use of available funds. Therefore, the analyses summarized in this section and subsequent sections are based upon the relatively high volumes that occur during June.

EXISTING TRAFFIC CONDITIONS

Current Roadway Characteristics

M-22. M-22 is under the jurisdiction of MDOT and has a three-lane cross section within the corridor study area except within the immediate area of its intersection with M-72. It has a mix of paved shoulders and curb and gutter, and has a 40 mile per hour speed limit. Daily traffic volumes on M-22 vary widely within the corridor as it currently carries approximately 12,000-25,000 vehicles on a weekday, with the lower volume just north of Cherry Bend Road and the higher volume near M-72. These volumes can be significantly higher during mid-summer peaks and festival periods. With the exception of the signalized intersections at M-72 and Cherry Bend Road, all public street and larger private drive intersections are stop sign controlled (side street stops).

Cherry Bend Road. Cherry Bend Road is
 a county primary roadway (CR 633) under the jurisdiction of the Leelanau County Road Commission (LCRC). It carries approximately 6,000 vehicles per day on its two-lane cross
section just west of $\mathrm{M}-22$. Cherry Bend Road has a 35 mile per hour speed limit near M -22 and, as noted earlier, is signal controlled at its intersection with $\mathrm{M}-22$.

Grandview Road. Grandview Road has a two-lane cross section and is also under the jurisdiction of the LCRC. It carries approximately 2,700 vehicles per day, and has a 35 mile per hour speed limit near M-22. Grandview Road is stop sign controlled at its intersection with M-22.

Carter Road. This is another one of LCRC's local paved roadways within the study area that has an uncurbed two-lane cross section. It also has a 35 mile per hour speed limit and carries approximately 1,900 vehicles per day. Carter Road is stop sign controlled at its intersection with M-22.

M-72. Under MDOT jurisdiction, M-72 has a varied cross section at the southern end of this study area. It has a four-lane boulevard cross section to the south of the M-22/M-72 intersection, and a standard four-lane cross section to the west of that intersection, both with curb and gutter in the immediate area. MDOT June 2014 data indicates that M-72 carries approximately 28,000 vehicles per day south of the study area and approximately 9,500 vehicles per day west of the signalized $\mathrm{M}-22$ intersection. The speed limit is 35 miles per hour on both of these sections of $\mathrm{M}-72$.

Morning and afternoon peak hour traffic counts were taken in June 2015 from 7:00-9:00 AM and 2:00-6:00 PM on a weekday at the following M-22 intersections:

- Cherry Bend Road
- Grandview Road
- Pico Drive
- Brewery Creek (private)
- Carter Road
- M-72

These counts indicated that the weekday peak hours generally occur between 7:30-8:30 AM and the 4:45-5:45 PM. Among other study area traffic characteristics, Figure 1 on the following page illustrates the existing peak-hour volumes at the study area intersections.

Evaluation of Existing Conditions

Intersection "level of service" calculations were completed to evaluate the current operational efficiency of the study area intersections. These calculations were completed using techniques outlined in the 2010 Highway Capacity Manual by the Transportation Research Board.

Level of service (LoS) at signalized and unsignalized intersections relates to the delay, traffic volumes, and intersection geometry. LoS are expressed in a range from "A" to "F", with "A" denoting the highest or best operating conditions. Generally, an LoS "D" is considered the

minimum acceptable service level for signalized and unsignalized intersections in suburban or rural areas such as this. The criteria for determining the LoS at signalized and unsignalized intersections are outlined in the technical appendix of this report.

The existing peak hours were analyzed at the study area intersections. The results of the LoS analyses are also shown within the circles in Figure 1. Copies of the computer analyses are included in the technical appendix.

As shown, most of the constrained movements at the study area intersections operate acceptably (LoS A - D) during both peak hours in seasonal periods such as June. Exceptions to that occur within the higher volume intersections on the south portion of the study area. Calculations indicate that drivers on the eastbound approach on Carter Road at M-22 experience some delays during the afternoon peak hour as indicated by the LoS E.

As expected, calculations indicate that even during non-peak summer conditions the signalized $\mathrm{M}-22 / \mathrm{M}-72$ intersection experiences significant congestion during both morning and afternoon peak hours, with LoS of E or F for several movements.

As noted earlier there was much discussion during team and stakeholder meetings throughout the process regarding the perceived and real significant differences in traffic volumes between summer peaks and June or other times of the year. Even leaving out a couple of festival periods, traffic volumes appeared to increase substantially along the M-22 corridor in July and August. No additional counts were taken during this time period, but onsite observations during a couple of weekday afternoon peak hours substantiate earlier local statements to that effect. The long southbound queues observed on southbound M-22
 during the afternoon peak-hour were not short term in nature, and at one point extended from M-72 to just north of Cherry Bend Road, a distance of well over a mile. Subsequent investigation confirmed that there was no related crash issue during those observation periods, and additional anecdotal information indicates that such long queues are not uncommon during those two (July and August) summer months.

Crash History

A brief review of recent crash histories was completed along the corridor study area as part of this existing conditions analyses. Such reviews are typically done to pinpoint any location(s) where the pattern of crashes indicates there is a type of crash that could be
addressed by some type of physical or operational improvement. Figure 1 also includes insets that show a few of the key crash locations along the corridor.

Based upon that review, there are no specific intersections or locations that have a significant crash pattern ($3-5$ crashes of one type in any given year) along the corridor study area except for the expected $\mathrm{M}-22 / \mathrm{M}-72$ intersection. The crashes that have occurred at that intersection appear to be tied directly to related congestion issues, and will therefore be addressed in the subsequent future conditions analyses section. The graphic below depicts most of the recent crashes that have occurred there from 2010-2014.

Discussion - Recommended Roadway/Traffic Improvements

Given the results of the Existing Conditions analysis and related traffic simulations, near term non-access related traffic improvements should be focused on the M-72/M-22 intersection. Testing iterative improvements at that intersection based upon June 2015 data indicates that adding a second northbound left turn may be the best solution for that level of traffic. This would not only provide better operations for the movement, but would allow a slight shifting of green times to other movements. Calculations show (copies in technical appendix) that improvement would improve the current calculated LoS's from F to D for the northbound left turn movement and the southbound through movement during either/both of the peak hours while still allowing the other movements to operate at LoS C or better. Further discussion regarding this intersection is discussed in the next chapter.

EXISTING ACCESS SYSTEM CONDITIONS

Although the above traffic analyses included $\mathrm{M}-22$ at $\mathrm{M}-72$, the access management portion of this study is focused on the study area of M-22 just within Greilickville/Elmwood Township, and so does not encompass the area at/near M-72.

There are typically two or three general development characteristics that need to be taken into account for most access management corridors. In general, there are areas that are currently undeveloped (and may stay that way for some time), areas that are relatively undeveloped but experiencing growth pressures, and areas that are already mostly or fully developed and may be subject to redevelopment. For the most part the study area of M22 from the county line north to Cherry Bend Road fits into the latter category.

Chapter 3 will outline proposed improvements and standards that the Elmwood Township and road agencies can use to improve or retain efficient access. In order to define those proposed improvements, field surveys were completed to identify existing access locations and areas that have poor or substandard access conditions. These are outlined below, along with current roadway characteristics.

Problems created when access is not managed include:

1. Driveways spaced too close together - closely spaced driveways, and lack of connections between adjacent businesses, lead to more conflicts between vehicles traveling along M-22 and those slowing down to enter a driveway or exit it. A series of closely spaced driveways can also be more confusing for motorists.
2. Driveways too close to a signalized intersection - vehicles attempting to enter or exit driveways near traffic signals create conflicts with vehicles traveling through the intersection, which increases the potential for congestion and crashes.
3. Driveways with a poor offset from driveways across the street - the location of driveways and intersections across the street impacts safety and traffic operations. Driveways placed too close to access points on the other side of the street can result in vehicles making opposing left turns both attempting to use the same part of the center turn lane. This can cause congestion or crashes.
4. Driveways that are not designed for today's conditions - some of the driveways along the corridors were designed many years ago, when traffic volumes were lower. Those driveways may be too wide, too narrow or have radii that are too small - all of which can increase conflicts between through traffic and those using access points.

M-22 Access Conditions

The study area is considered a "retrofit" corridor in terms of access management. This means it is fairly well developed, with few undeveloped parcels within the corridor.

However, there are current and planned changes in uses, expansions or redevelopment. This situation is similar to many other mature high volume commercial corridors around the state where access was constructed years before there was awareness of the detrimental effects of poor access management. Two key differences though are that much of the traffic on M - 22 is transient and does not originate or end within the study area, and the businesses tend to be fairly small and do not include "big box" development.

To put things in perspective there currently are approximately 53 driveways along the corridor study area, typically deemed to be excessive (and where approximately 30 driveways per mile would be closer to current driveway spacing standards). Although there are a couple of examples of good access decisions, there are many examples of substandard access/driveway spacing, design, and numbers by today's standards.

Current access management deficiencies on M-22 include:
$\Delta \quad$ Poor driveway spacing and/or unnecessary second drives; many instances of driveways spaced too close together or sites that have more than one driveway that do not warrant a second (or more) access. The area just south of Carter Road has approximately 15 commercial driveways within a $+/-700$ foot section (current standards would allow for about three driveways on each side for a total of six).

$\Delta \quad$ Poor intersection-to-driveway spacing; there are a couple of examples of poor spacing between an intersection and an adjacent commercial driveway along the corridor. This close spacing can affect both the operations and safety at the intersection, especially those with traffic signals.

$\Delta \quad$ Substandard driveway

 design/storage; small driveway radii, too little driveway storage (distance from roadway to first internal parking/circulation) at numerous locations - typical of older small commercial sites.
$\Delta \quad$ Few internal cross

access/service drive connections; the efficiency of this study area can be
 significantly affected by the lack of internal connections between adjacent uses (either large
or small businesses). Grade differences create constraints at a few locations, particularly in the Grandview Road area.
$\Delta \quad$ Substandard driveway offset; poor offsets currently exist at many locations (typical of older developed corridors), although it may have been difficult in the past to align or offset driveways properly in some locations given that there are so many.

$\Delta \quad$ Substandard driveway width.

 Several locations have older, very wide paved or gravel driveway openings that can lead to driver and cyclist confusion due to multiple points of access/egress.Discussions regarding specific short and long term access improvements
 will be covered later in this report.

3. PROJECTED FUTURE TRAFFIC CONDITIONS

The purpose of this chapter is to summarize the expected future relative peak traffic conditions within the study area ten years from now with background traffic growth and potential developments traffic in place. These analyses help define the timing and applicability of any potential 2026 roadway improvements.

2026 FUTURE TRAFFIC CONDITIONS

Background Traffic

To help assess the future conditions at any intersection, traffic volume growth factors were taken into account. Based upon input from MDOT staff, a 1.5% annual growth factor was incorporated into the future 2026 traffic projections

Projected Development

Elmwood Township provided information regarding potential development or redevelopment that can be expected to occur within seven parcels along the corridor study area within the next ten years. The projected types and approximate combined sizes of uses are noted below.

- Retail/service 43,500 s.f.
- Retail/office 93,000 s.f.
- Condominiums 164 units
- Apartments 192 units

Further discussion regarding potential land uses and related impacts are summarized later in this chapter at the bottom of Page 22.

DEVELOPMENT TRIP GENERATION

Trip Generation Ninth Edition, by the Institute of Transportation Engineers (ITE) was used to calculate the projected traffic based on the projected development components. Trips are measured individually for inbound and outbound movements. Therefore, a visit to the site by a patron or employee generates two trips, one inbound and one outbound.

The development sites are expected to generate approximately 331 weekday morning peak-hour vehicle trips at various site driveways and 965 weekday afternoon peak-hour trips at the same site driveways. Of those trips, 299 morning and 791 afternoon trips will be new trips added to the roadway system. Per ITE criteria, the remainder will be pass-by trips from the current M-22 traffic stream.

Table 1 summarizes the projected morning and afternoon peak-hour vehicle trip generation based upon the projected development.

Table 1
Projected Developments' Peak-Hour Trip Generation

Land Use	ITE Code	Size	AM		PM	
			In	Out	In	Out
Retail/service	826	43,500 sf	26	16	55	71
Retail/office	820	93,000 sf	55	34	274	297
Condominiums	230	164 units	15	80	73	36
Apartments	220	192 units	$\underline{21}$	84	104	55
		Subtotal:	117	214	506	459
		Less pass-by trips ${ }^{(1)}$:	-16	-16	$\underline{-87}$	-87
		Total new trips:	101	198	419	372

Notes:

1. Only applied to retail uses. Conservative pass-by reduction of 25% used.

PROJECTED TRIP DISTRIBUTION

The directional distribution of the new trips expected to be generated by the developments was roughly based upon existing travel patterns and the potential market area for those uses. In general, the retail/commercial trips are expected to be split roughly 50/50 north and south along $\mathrm{M}-22$, while the residential trips are expected to be largely oriented to the south, with a projected $70 / 30$ split south and north.

The distribution of pass-by trips was based upon current directional distribution of traffic passing by the site. During the morning peak the distribution is roughly $60 / 40$ south/north, while in the afternoon peak it is the somewhat expected opposite, $60 / 40$ north/south.

Based upon the above distribution patterns and the locations of the individual parcels, the projected developments' peak-hour project traffic was assigned to the applicable access points and the adjacent roadway system. Figure 2 on the next page illustrates the expected trip assignment of site-generated traffic upon completion/occupancy of the development sites.

The forecast project trips were added to the expected future 2026 background peak-hour volumes to depict the estimated total 2026 future volumes during the morning and afternoon peak hours. These total 2026 future volumes are illustrated, among other items, in Figure 3.

EVALUATION OF FUTURE CONDITIONS

Intersection LoS calculations were completed to evaluate the projected 2026 future morning and afternoon peak hour conditions at the study area intersections. The results of the LoS analyses are summarized in Figure 3. Copies of the computer analyses are included in the technical appendix of this report.

The results of the analyses shown in Figure 3 indicate that the addition of background traffic growth and study area development traffic will have, as expected, a significant negative impact at four of the five of the study area intersections. Side street outbound movements at the unsignalized Grandview, Brewery Creek, and Carter Road intersections with M-22 are projected to have an LoS of E or F during one or both of the peak hours.

The 2026 projections show that the M-22/M-72 intersection will experience even worse conditions, with an expected LoS of F during one or both peak hours for all of the movements except for the eastbound right turn. Traffic simulations appear to confirm these congested conditions with very lengthy queues occurring during the peak hours.

DISCUSSION - POTENTIAL 2026 ROADWAY IMPROVEMENTS

Based upon the above results there are several locations that will need physical and/or operational improvements in order to even accommodate potential June 2026 traffic volumes. Given the relatively low peak hour volumes and projected lack of queuing issues, improvements at the Carter Road intersection with $\mathrm{M}-22$ are not recommended as of yet. Analyses of the other four intersections are summarized below.

M-22/Cherry Bend Road

Although no LoS of E or F are projected during either peak hour, it's recommended that the northbound left turn movement continue to be monitored. A northbound left turn phase may be warranted sooner than expected.

M-22/Grandview and M-22/Brewery Creek

These two intersections have been the focus of much discussion during this corridor study from a development standpoint and a focal point for marina access and pedestrian crossing activity. Those discussions including the potential for reconfiguring one or both roadways to create a single primary intersection that could potentially meet the current eight hour traffic signal warrants that MDOT would require for signal installation. If a signal was installed, it would provide a safer location for pedestrians to cross and provide more efficient left-turn egress operations for those streets and the Elmwood Marina.

Signal Warrant Analysis - M-22/Brewery Creek
Of the two intersections noted above, this intersection appears to provide the better location for a potential signal as it is already a recognized pedestrian crossing, would provide a slightly better location to focus service drive/commercial traffic (more about that in the subsequent access management section), and would provide gaps for, if not outright connection/alignment, for exiting marina traffic.

This section therefore outlines the outcome of a predictive signal warrant analysis for this location. As such, it compares projected traffic volumes to defined criteria outlined in the current Michigan Manual of Uniform Traffic Control Devices (MMUTCD). As is often the case, a signal may not be allowed to be installed (if deemed warranted herein) until the traffic volumes are actually in place (verified by updated traffic counts). But this type of analysis provides a sound basis for expectations for reviewers and approval agencies.

Data Collection

As noted earlier in this report, the existing speed limit along this section of $M-22$ is 40 miles per hour. 24-hour machine counts were completed on the M-22 and Brewery Creek approaches to the intersection. The field reports of the traffic counts are included in the technical appendix of this report. That data was subsequently combined with projected hourly volume increases from background traffic growth and projected additional traffic from the Brewery Creek development.

Warrant Analysis Parameters

Like all road agencies, MDOT requires that an intersection meet at least one of several traffic signal warrants outlined in the 2011 MMUTCD before a signal can be considered for installation. The most applicable warrants for this location are those related to volumes.

Of those, MDOT typically requires that volume criteria be met for Warrant 1 (Eight-Hour Vehicular Volume) before consideration can be given for installation of a traffic signal. And within that warrant it is preferred that the criteria under Condition A is met. Therefore, the following analyses focus on the criteria defined for Warrant 1 with results further included in the appendix for review.

Warrant 1 requires that, for each of eight or more hours of the day, minimum traffic volume thresholds must be met on the major and minor road approaches to the intersection. The volumes must exceed a certain number of vehicles per hour under one of the two conditions outlined on the next page. The posted speed limit of 40 miles per hour just misses the applicability of using a 30% reduction in required minimum volume thresholds for both the major and minor approaches. Given the higher traffic volumes expected for Brewery Creek Drive (as opposed to the park driveway), the analyses are on that eastbound approach when referring to the minor street approach.

Warrant 1: Condition A (Minimum Vehicular Volume):

- For at least eight hours of a day, the major street (M-22) must have at least 600 vehicles per hour (total of both approaches); and
- For at least eight hours of a day, the higher volume minor street approach must have at least 200 vehicles per hour for the same eight hours as the main street.

Warrant 1: Condition B (Interruption of Continuous Traffic):

- For at least eight hours of a day, the main street ($M-22$) must have at least 900 vehicles per hour (total of both approaches); and
- For at least eight hours of a day (same eight hours), the higher volume minor street approach (Brewery Creek) must have at least 100 vehicles per hour.

Analysis - Projected 2026 Future Conditions
Using the existing traffic volumes as a base, 2026 traffic volumes were projected over an average weekday to evaluate whether a signal may be warranted upon completion of site developments. For a conservative analyses, a background growth factor was not applied to the existing major street/M-22 traffic volumes over an entire day. The minor street approach volumes were developed using ITE data, including specific information as to how residential and retail/commercial uses traffic is spread out over an average weekday.

The projected total hourly northbound "minor street" approach volumes were then included in MDOT's standard signal warrant analyses spreadsheet, along with the major street (M-22) volumes. Table 2 on the next page illustrates the volume summary from that analysis. Additional output from the spreadsheet is included in the technical appendix.

As shown in Table 2, Warrant 1 Condition A is projected to be met for six hours, thereby missing that warrant by two hours. It is important to note that no relocation/redistribution of Grandview traffic was assumed for this base analysis. Subsequent review/analysis indicate that if such a shift in approach traffic were to occur, criteria for Condition A would be met for 9 hours, or one more than the minimum for meeting that condition.

Table 2 Signal Warrant Volume Summary

Michigan Manual of Uniform Traffic Control Devices Volume Summary Prepared by MDOT for the 2011 Edition of the MMUTCD							
Spot Number:	na						
Major Street:	M-22			Minor Street:	Brewery Creek		
Intersection:	M-22 @ Brewery Creek						
City/Twp:	Elmwood Twp						
Date Performed:			Performed By:	PAE			
Date Volumes Collected:		2026 Projected					
	$\begin{gathered} \hline \text { Major } \\ \text { NB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Major } \\ \text { SB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Minor } \\ \text { EB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Minor } \\ \text { WB } \\ \hline \end{gathered}$	Total Major	Highest Minor	Total
00:01-01:00	76	24	0	0	100	0	100
01:00-02:00	48	17	0	0	65	0	65
02:00-03:00	20	18	0	0	38	0	38
03:00-04:00	24	14	0	0	38	0	38
04:00-05:00	22	52	0	0	74	0	74
05:00-06:00	64	123	0	0	187	0	187
06:00-07:00	159	326	34	0	485	34	519
07:00-08:00	405	798	114	0	1203	114	1317
08:00-09:00	551	787	100	0	1338	100	1438
09:00-10:00	580	684	68	0	1264	68	1332
10:00-11:00	588	683	115	0	1271	115	1386
11:00-12:00	695	651	170	0	1346	170	1516
12:00-13:00	728	658	214	0	1386	214	1600
13:00-14:00	793	635	208	0	1428	208	1636
14:00-15:00	752	672	211	0	1424	211	1635
15:00-16:00	829	730	220	0	1559	220	1779
16:00-17:00	917	873	221	0	1790	221	2011
17:00-18:00	1050	864	238	0	1914	238	2152
18:00-19:00	788	584	179	0	1372	179	1551
19:00-20:00	576	436	165	0	1012	165	1177
20:00-21:00	509	352	181	0	861	181	1042
21:00-22:00	422	228	169	0	650	169	819
22:00-23:00	248	136	0	0	384	0	384
23:00-00:00	140	57	0	0	197	0	197
Total	10984	10402	2607	0	21386	2607	23993

Also shown by the volumes in Table 2, Warrant 1 Condition B criteria would be met for at least 14 hours, thus meeting that warrant.

Evaluation - Capacity Analysis

Meeting a key signal warrant or warrants through a predicted set of traffic volumes is one step in the process of defining recommended roadway improvements. Identifying if the intersection in question can accommodate predicted peak hour traffic under signalized control is the needed follow-up check. The projected 2026 afternoon peak hour volumes at the M-22/Brewery Creek intersection were analyzed under signal control assuming the current three-lane cross section on M-22 and a two-lane approach on Brewery Creek.

Several iterations of signal timing and operations were checked that included a pedestrian crossing on one leg of $\mathrm{M}-22$. Unfortunately those calculations show at best that at least two movements are expected to operate at LoS's of E or F during the peak hour under signal control. This is largely due to the heavy northbound and southbound through volumes (both over 1,000 vehicles) that require use of a vast majority of the green time in order to operate at even borderline acceptable conditions.
As such, it does not appear that a traffic signal at M22/Brewery Creek (or M-22/Grandview) will be an acceptable/recommended improvement even though it may meet one or more key signal warrants.

It should be noted that widening of $\mathrm{M}-22$ to a five-lane cross section at this intersection would allow it to operate acceptably under signal control during 2026 peak (June) hours. However, such a widening would need to extend further than just this intersection, and therefore not meet the underlying Township/master plan goal of creating a more pedestrian/non-motorized friendly environment
> "As such, it does not appear that a traffic signal at M-22/ Brewery Creek (or M22/Grandview) will be an acceptable/ recommended improvement even though it may meet one or more key signal warrants" within the subarea. The actual length of the widening would need to be determined through additional discussions with MDOT, as the distance needed to reduce the cross section back down to a single through lane (in each direction) while still accommodating existing and projected peak hour volumes is not easily determined. And, such transition sections have been shown to engender unsafe passing movements, and road agencies are typically against creating "hourglass" sections of roadways versus a consistent cross section. In short, it is likely that MDOT would require a fairly extensive five-lane section of highway that may entail most of this study area.

Further, the projected 2026 peak hour volumes were also run through roundabout capacity software as an additional check in case that intersection control alternative was desired. Those calculations also indicated that the through volumes on $\mathrm{M}-22$ are/will be just too high to retain the current three-lane cross section on M-22.

In summary, whereas near-term the highest and best use of several of the seven undeveloped parcels is retail/service or retail/office, ultimately the very strong potential exists that these near-term uses will be converted to residential because of the corridor's close proximity to the City of Traverse City. That being said, if commercial retail/service or retail/office were to remain the predominant future land uses, the negative impact at all five study area intersections will be even worse than indicated in this report because as shown, retail/service and retail/office peak-hour trip generation characteristics are easily greater than those for condominiums or apartments. Thus, such an occurrence would not change the outcome of the report's findings because the calculated fact remains that whereas a signal could be warranted at least at one location, the volumes are too high on M-22 itself (in 10 years) that the corridor won't function for the north/south through movements without widening portions of $\mathrm{M}-22$ to five lanes.

This intersection is outside of the actual $\mathrm{M}-22 /$ Greilickville study area so extensive analyses were not completed to define long term improvement measures. In addition, mid-study stakeholder discussions including MDOT staff indicated that MDOT is planning to do a congestion management analysis of this intersection.

In general, the operation of the M -22/M-72 intersection (and intersections further south on M72) defines in many ways how well $\mathrm{M}-22$ functions to the north. As noted in earlier sections, peak summer traffic volumes create extensive queuing issues through this study's corridor, in addition to the M-72 approaches. The substandard spacing of the Bay Street/M-72 intersection also exacerbates the conditions at this
 key junction, particularly during the afternoon peak hour.

As part of this analysis, several potential improvements were identified, with capacity analyses completed on at least one of those potential $\mathrm{M}-22 / \mathrm{M}-72$ intersection improvement alternatives to help define just what it may take to really address relative peak conditions. Those potential improvements, also noted on Figure 3, include the following.

- In addition to the second northbound left turn lane noted in the Existing Conditions chapter, consider adding a second northbound through lane, limit the movements to/from Bay Street, and revise the signal operations. This would also require extending a second northbound lane on M-22 for a certain distance north of M-72 before tapering down to a single northbound lane.
- Consider construction of a multi-lane roundabout. Although this alternative could provide significant safety and capacity benefits, it would require elimination or realignment of the Bay Street connection. And to accommodate Tart Trail users this type of improvement would need to include a HAWK type signal or relocation (or grade separation/tunnel) of that trail crossing.
- Consider separating the northbound through movement so it is not stopped/controlled by the signal. This would also require that a second northbound through lane be installed on M-22 for a section just north of M-72 to allow eastbound left turn traffic to merge into the northbound through traffic. Such an improvement would provide
additional signal capacity for the other deficient movements, but would result in essentially eliminating any ability for pedestrians to cross to/from the east side of the intersection at grade.

Pedestrian/Non-Motorized Improvements

One of the key goals of the 2013 Corridor Master Plan and of this corridor study was to identify roadway improvements that would enhance the ability of visitors/patrons/employees/etc to more easily access multiple sites on either side of M-22 without resorting to driving to each. The expanding business and marina uses in the Brewery Creek/Grandview area (plus potential upcoming condominium/apartment uses) is an example of where better connectivity is needed than the existing marked crosswalk. The current three-lane cross section throughout the corridor isn't too wide, but the consistently
 higher traffic volumes, especially in the summer months when pedestrian demands are higher, makes it difficult to cross safely during many portions of the day.

Based upon the findings in the last section, it unfortunately doesn't appear that one or more signalized intersections or roundabouts will be a feasible way to provide more controlled, safer pedestrian crossing locations along M-22 within the corridor study area unless M -22 itself is widened, a somewhat self-defeating "improvement" in the quest to develop a more pedestrian friendly environment.

Therefore locations were examined along the corridor study area that either already have significant pedestrian demands and/or are expected to have higher demands in the coming years. At those locations it is recommended to work with MDOT to develop raised mid-block median islands, either within the existing center left turn lane width or with slight widening of that center lane to provide more pedestrian/cyclist storage. These
 types of refuge islands provide more opportunities for crossing as it breaks down the crossing movement into two distinct crossings where only one direction of vehicle traffic has to be observed and crossed at one time. If/when pedestrian volumes become high
enough, some type of pedestrian signal may be warranted, although increased vehicular congestion will need to be taken into account as part of that effort.

Identifying the most feasible locations for such raised median crossings is not just a matter of finding where the demand is/will be. Such refuge islands can't be placed where it will be in conflict with left turn traffic demands at site driveways or public street intersections. Even with access revisions/reductions outlined in the next chapter, there appear to be only a few good candidate locations along the corridor. Figure 3 illustrates several potential locations. In coordination with access reduction recommendations, those include two locations near the M-22/Carter Road intersection, one just north of the Bluewater Hall Event Center, and another one adjacent to the Discovery Center/Children's Museum site. One other potential location (not shown) would be immediately south/adjacent to the current Elmwood Marina exit driveway, about 150 feet north of the current designated pedestrian crossing. However, access revisions related to the marina are yet to be fully defined so that location may
 need to shift.

In any case, there are multiple examples of such midblock crossings northern Michigan, including one just down the road on M-72 (shown above).

This chapter has summarized the analyses and findings regarding several standard roadway improvements. However, one additional set of improvements that can provide significant safety and efficiency benefits along the corridor is related to access management. The background for such improvements and specific access management recommendations are covered in the following chapter.

4. ACCESS MANAGEMENT STANDARDS \& RECOMMENDATIONS

Based upon the analysis of existing conditions and constraints and use/review of standards outlined in the MDOT-sponsored Access Management Guidebook, the access management portion for the M-22 study area was developed. This chapter summarizes the basic design standards that should be used by Elmwood Township for future access considerations along this corridor.

ACCESS MANAGEMENT STANDARDS

Since this section of M -22 is largely developed and there is a significant difference in the current and potential future development along the corridor, it is impractical to impose driveway standards uniformly throughout the overall study area. The recommendations outlined in this chapter were developed to provide sufficient flexibility to be effective and equitable, while also consistent with requirements set by MDOT where practical. In short, for "retrofit" corridor study areas like this it is impractical to try to meet exact spacing standards, but the goal is to at least get closer to those standards by eliminating or relocating unnecessary commercial driveways or redesign them for safer use.

The introduction of this report mentioned several benefits that typically result from consistent use of an access management plan. To achieve those benefits, access standards must adhere to the following principles:

- Design for efficient and safe access. Identify driveway design criteria that promote safe and efficient ingress and egress at driveways.
- Separate the conflict areas. Reduce the number of driveways, increase the spacing between driveways and between driveways and intersections, and reduce the number of poorly aligned driveways.
- Remove turning vehicles or queues from the through lanes. Reduce both the frequency and severity of conflicts by providing separate lanes and storage areas for turning vehicles and queues.
- Limit the types of conflicts. Reduce the frequency of conflicts or reduce the area of conflict at driveways by limiting or preventing certain kinds of movements.
- Preserve public investment and the integrity of the roadway. Recognize that
substantial public funds have been, and will need to be, invested to develop the corridors to move traffic safely and efficiently.
- Provide reasonable access. Recognize that the public desires convenient access and property owners have the inherent right to reasonable access to public roadways. In some cases that reasonable access may be fewer access points than a property owner desires or it may be indirect or shared access in some instances.

Improved driveway spacing simplifies driving by reducing the amount of information that a driver must process and react to. Locating a driveway away from the operational area of a signalized intersection decreases the potential for congestion and crashes, for both through traffic and vehicles using the driveway. Proper spacing

"Improved

 driveway spacing simplifies driving by reducing the amount of information to which a driver must process and react." between driveways and unsignalized roadways (or other driveways) can reduce confusion that require drivers to watch for ingress and egress traffic at several points at the same time, while also controlling their vehicle and monitoring other traffic ahead of and behind them. As noted earlier, the primary, overriding theme of any access management plan is to increase the safety of the study area corridor(s).The following sections discuss a few of the basic access design criteria that were used during the analysis of the M-22 study area. The specific ways in which these criteria or standards are applied to the corridor is outlined later in the chapter.

Access Design Parameters

Access management involves a series of tools to limit and separate traffic conflict points, separate turning vehicles from through movements, locate traffic signals (if applicable) to facilitate traffic flow, and limit direct access on higher speed roads to preserve capacity and improve safety. The following is a summary of what access management standards typically include.

- Number of Access Points: The number of access points to a development should be limited to one where possible. The number of driveways allowed along $M-22$ will affect traffic flow, ease of driving, pedestrian elements, and crash potential. Every effort should be made to limit the number of driveways and encourage access off side streets, service drives, frontage roads, and shared driveways. Driveways should be properly spaced from one another and from intersections with other major streets.

Access to a parcel should generally consist of a single driveway, and be shared with adjacent parcels wherever possible. Certain developments generate enough traffic to consider allowing more than one driveway. Although not generally applicable to this M-22 study area, larger parcels with frontages of at least 660 feet may also warrant an additional driveway. An additional driveway should only be considered following a
traffic impact study that demonstrates the need for additional access. Where possible, the second access point should be located on a side street or be shared with adjacent land uses.

- Driveway Spacing from Intersections: Driveways need to be placed such that there is proper spacing from an intersecting street, to ensure that traffic entering or exiting a driveway does not conflict with intersection traffic. Spacing between a proposed driveway and an existing public street intersection is an important design element that must be identified. Typical standards take into account the type of roadways involved (trunkline, arterial, etc.), type of intersection control and type of access requested. In most cases, a driveway should not be developed within the functional boundary of a given intersection, unless the size of the parcel and other constraints do not provide a good alternative.

Generally, for roadways such as M-22 that have a 40 mph posted speed limit, full movement driveways should be a minimum of 460 feet away from any
 signalized intersection and 230 feet away from an unsignalized intersection. Such distances are typically not attainable in lower speed zones ($25-35 \mathrm{mph}$) but a minimum of 150-200 feet should still be pursued. This speed zone is not currently applicable to M-22 itself, but it is to the side roads such as Cherry Bend, Grandview, etc.

In this case it is recognized that attaining such driveway spacing on corridors like M-22 that are highly developed isn't practical. In retrofit or older developed areas where existing parcel constraints prohibit proper spacing, driveways should be placed as far as possible away from the intersection. In most areas of the corridors, spacing of driveways on the side roads should be at least 150 feet from the nearest edge of the M 22 pavement. Driveways to side roads that are under the jurisdiction of the LCRC must meet their current standards.

- Driveway Spacing from Other Driveways: Driveways also need to provide proper spacing from other driveways, to ensure that turning movement conflicts are minimized. Generally, the greater the speed along the roadway the greater the driveway spacing should be.

Spacing standards recommended for this corridor study area are based upon MDOT guidelines adopted several years ago (supported by numerous national references). Guidelines require the following minimum distances between driveways (centerline to centerline) based on a measured average speed. For M-22, with a consistent speed limit of 40 mph , a 300-foot minimum spacing is desired as noted in Table 3.

Table 3. Minimum Driveway Spacing

Posted Speed (MPH)
25
30
35

- 40

45
50+

Minimum Driveway Spacing
130 feet
185 feet
245 feet
300 feet
350 feet
455 feet

As with the driveway-to-intersection criteria, it will be difficult to attain this level of spacing in the retrofit areas of the corridor. So the primary goal is to close/combine driveways that maximize driveway spacing to the extent practical whenever opportunities arise.

- Driveway Alignment or Offset: In order to prevent left turn conflicts, driveways should be aligned with those across the street or offset a sufficient distance to prevent turning movement conflicts. Proper offsets of $250-325$ feet are difficult to achieve in retrofit corridors, so the goal again is to realign driveways as much as possible or close those that create very poor offset situations. Addressing left-turn offset issues are important as the majority of crashes at access points are related to left turns.
- Shared Driveways: Sharing or joint use of a driveway by two or more property owners should be encouraged. This will require a written easement from all affected property owners (during the site plan approval process). Where a future shared access is desired, the developer or landowner should deed an easement that will be provided to future adjacent land owners.
- Alternative Access: Alternative access should be encouraged, such as rear service drives or frontage roads.
 Where parcels have frontage on M-22 and a side street, access should be provided off of the side street. Certain turning movements should be limited, especially left turns, where safety hazards may be created or traffic flow may be affected.
- Service Drives: Frontage roads, rear service drives, shared driveways, and connected parking lots should all be used to minimize the number of driveways, while preserving the property owner's right to reasonable access. Such facilities provide customers with access to multiple shopping/commercial sites without re-entering M-22 and experiencing conflicts and higher speeds. In areas within one-quarter mile of existing or
potential future signal locations, access to individual properties should be provided by these alternative access methods, rather than by direct connection to a major roadway.

In areas where service drives or additional internal connections are proposed or recommended, but adjacent properties have not yet developed, the site should be designed to accommodate a future service drive, with access easements provided. MDOT or the LCRC (if applicable) may temporarily grant individual properties a direct connection to a major road until the frontage road or service drive is constructed. This access point should be closed by the property owner when the frontage road or service drive is constructed by the property owner.

The safety and efficiency of all of these types of facilities is only as good as their design allows. An important, but often overlooked, aspect of that design is the "storage" (or depth for stacking) provided at driveways. This is the distance between the main road and the service drive or the first internal crossing access. This storage needs to be deep enough to accommodate the expected vehicle queues and to reduce the chance of blocking internal circulation on the service drive. The correct depth is also needed to reduce the possibility of entering vehicles backing up into M-22 due to internal
"Shared access drives, service drives or frontage roads all serve to minimize the number of conflict points along a corridor while still providing reasonable access to the adjacent land uses." congestion. Correct location and maintenance of traffic control signs and pavement markings are essential to a smooth operation of these shared driveways.

There are several factors that affect the determination of the best alignment and depth of a service drive. Those factors include the existing right-ofway at that location on M-22, the depth of the adjacent parcels and the location of existing buildings in partially
 developed sections of the corridor. The storage should be at least 40 feet for drives providing access to two small commercial uses. The storage should be at least 60 to 100 feet and potentially much more than that (150-300 feet) for drives providing
access to more than two small commercial uses. The storage depth depends upon the trip generation characteristics of the existing and proposed long term land use to be served.

Rear service drives are often preferred because they do not create issues with driveway depth. They also facilitate placing parking to the rear of buildings and moving the buildings closer to the road. Rear service drives also have the added benefit of facilitating integrated access and circulation with development further to the rear. On larger sites, these rear service drives can be designed to function similar to roads by interconnecting multiple sites.

Service drives are usually constructed and maintained by the property owner or an association of adjacent owners. The service drive itself should be constructed to public roadway standards, in regard to cross section (ie. 22-30 feet wide), materials, design and alignment, as well as turning lanes where needed. The design is often based upon the type and size of vehicles it will need to accommodate, including large delivery trucks. However, an easement that defines a service drive does not need to be nearly as wide as a public street right-of-way. Since, by definition, these internal service drives will be serving several uses, with numerous driveways, additional uses such as on-street parking (temporary or otherwise) should be allowed only under special circumstances.

- Sight Distance: There are very few existing sight distance limitations in the study area. The minimum sight distance required for a vehicle to safely enter the M-22 traffic stream or one of the side streets is determined by MDOT and/or the LCRC at the time of an application for a driveway permit. The township should continue to coordinate with MDOT on M-22 at the time of site plan review to ensure that sight distance requirements can be met. If this distance cannot be met on the site, indirect access through another property should be sought.

Implementation of the above access criteria and elements will help to preserve the capacity, safety, and useful life of this M-22 corridor in its present state. Travel time and congestion will be decreased and the potential for crashes will be reduced. While initially individual land owners may see the plan as restricting access to their property, over the long term a well-managed plan will improve access to properties, maintain travel efficiency, and enhance the economic prosperity of local businesses. A strong access management program also has the benefit of closely coordinating land use and transportation decisions to improve the overall quality of life in this Greilickville corridor study area of Elmwood Township.

ACCESS MANAGEMENT RECOMMENDATIONS

The access management plan/recommendations developed for the M-22 corridor study were based upon the analysis of existing access conditions and constraints, input from stakeholders, local officials and property owners, and review of MDOT, national, local, and other states access guidelines. However, developing standards to be used for future access
management considerations are only part of the picture. The other key element for any access management plan is to identify improvements to existing access systems that will reduce crash potential and provide better efficiency within the corridor study area. These corrections are typically referred to as retrofit access improvements.

As noted during the meetings with the stakeholders, in most areas of the corridor it may be difficult to retrofit it to meet current spacing guidelines for new driveways. In those cases, however, the goal is still to minimize the number of driveways and comply with MDOT

It should be
recognized that many
of the retrofit
improvements
recommended in the
plan can likely only be
implemented when an
owner or developer
approaches the
Township or
MDOT/LCRC during
the next site plan
approval process.

This plan should be viewed as a flexible document that is subject to adjustments and improvements as the study area develops/redevelops. Although the basic design concepts should remain in place, exact locations and configurations of driveways, service drives, and frontage roads may shift as future development plans come into focus.

The recommendations of the Access Management Plan are largely based on parcel configurations and future land use plans in place at the time that this plan was prepared. Property combinations and unified development of small parcels is strongly encouraged. In addition, existing parcels should only be divided if a coordinated access system is retained through signed agreements and illustrated on an approved site plan.

The following discussions regarding access management plan recommendations are general in nature and do not discuss each site on an individual basis, although some sites are noted of special significance. The discussion and graphics start with the north half of the corridor study area on Figure 4 and then the south half on Figure 5.

M-22 North - Cherry Bend Road to the Discovery Center

Figure 4 illustrates the access management recommendations developed for this northern portion of the study area. This part of M-22 is largely developed but with fewer commercial driveways that it's southern counterpart. Even so, there are several recommendations to close or combine poorly spaced driveways or revise a substandard driveway design when the opportunity arises. Given the potential for development/redevelopment on the west side of M-22 just south of Cherry Bend Road and within the Brewery Creek site and to the

south, the Township should consider long term development of coordinated service drive systems. The alignment of those rear service drives can take many forms and will be defined in part by wetland and other constraints. But such service drives can pay big dividends by allowing access to side streets and/or providing additional access/egress options for individual site patrons, and generally leading to fewer access points along M-22 in the long term.

The one segment of the corridor study area where this plan was not able to fully pin down any specific access management improvements is adjacent to the Elmwood Marina. Many potential improvements were identified and discussed, but constraints related to marina operations, park circulation, creek location, existing building locations, and grades have made it difficult to make definitive short or long term recommendations. It is hoped that this matter will be taken up as part of future study efforts.

M-22 South - Discovery Center to South County/Township Line

Figure 5 illustrates the access management recommendations developed for this southern portion of the study area. Like much of the overall corridor, this section is highly developed/redeveloped so the efforts here will be almost exclusively of the retrofit nature. Therefore, most of the recommendations are related to adjusting existing driveways/access points.

Driveway closures are easily the most consistent recommendation, particularly on the extreme southern portion of this section. As noted earlier in this report, this segment has many small sites with multiple driveways. The sites were largely developed/ approved many years ago within small parcels and prior to current knowledge of the negative safety impacts of poor spacing. There is a subsection just south of Carter Road where excessive and/or poorly spaced commercial drives are especially
 prevalent. The plan calls for the closure or relocation of approximately eight of the fifteen commercial driveways on $\mathrm{M}-22$ in this 700 -foot subsection.

SPEED LIMIT IN AREA

SIGNAL OR FLASHING BEACON

RECOMMENDED DRIVEWAY CLOSURE
RECOMMENDED NEW/RELOCATED DRIVEWAY
M-22 CORRIDOR STUDY ACCESS MANAGEMENT RECOMMENDATIONS

Another important recommendation includes an extended rear service drive along the west side of M-22 as noted earlier. It appears the best location to bring a consolidated access point for a connection to M-22 would be in/adjacent to the currently vacant business site located just north of the Bluewater Hall Event Center. If/when the former Marathon gas terminal site redevelops, the additional extension of the service drive could be made to the south. In any case, this rear service drive could provide additional (or only) access/egress points for businesses along the M-22 frontage, and potentially allow patrons to access multiple sites between here and Grandview Road without having to use M-22.

5. CONCLUSIONS

The chapters of this report have summarized the current traffic and access management conditions along the $\mathrm{M}-22$ Commercial Corridor study area, along with analyses and recommendations for applicable future improvements that will help provide an improved environment for all corridor study area users. Keeping in mind that this study is based upon annual near-peak conditions (June), the key conclusions that were drawn by the review and analyses efforts are as follows.

- Analyses indicate that potential development around the Brewery Creek Drive/ Grandview Road area could generate enough side street traffic within ten years (or sooner) to warrant a signal (or roundabout) on M-22 in that area, assuming a realignment of Grandview Road and/or more dense development than is currently expected. However, intersection capacity calculations show that $M-22$ would need to be widened to a 5-lane cross section at that intersection and for a considerable length in each direction in order to allow it to safely function within acceptable levels. In short, meeting a signal warrant isn't the key/only issue, it's also a matter of addressing the very heavy through traffic volumes on $\mathrm{M}-22$.
- There are numerous deficiencies in the existing driveway access system that can be largely addressed in the long term by a combination of closed or relocated driveways, development of shared access points, and development of front or rear service drives.
- Although not part of this study, discussions among stakeholders included the long term potential for developing/constructing an adjacent alternative parallel route for $\mathrm{M}-22$, thereby removing most of the existing through traffic in this subarea that could result in a much more local user friendly environment.
- The $\mathrm{M}-72 / \mathrm{M}-22$ intersection already experiences significant congestion during peak hours that, at times, leads to queuing and other issues well into the primary study area to the north on $\mathrm{M}-22$. As regional development and related traffic continues to grow, the congestion will worsen. To that end, MDOT is planning to do a congestion management analysis of this intersection.

Technical Appendix

M-22 Greilickville Subarea Corridor Study

- Level of Service Definitions
- Glossary
- Count/Data Summaries
- LoS Analyses Results
- Signal Warrant Output
- Meeting/presentation materials
- Other background information

Level of Service Definitions

Signalized Intersections

Level of Service A: Describes operations with very low average stopped delay, i.e., less than 10.0 seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.

Level of Service B: \quad Describes operations with an average stopped delay in the range of 10.0 to 20.0 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.

Level of Service C:

Level of Service D:

Level of Service E:

Level of Service F:

Describes operations with an average stopped delay in the range of 20.1 to 35.0 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.

Describes operations with an average stopped delay in the range of 35.1 to 55.0 seconds per vehicle. At Level of Service D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c (volume/capacity) ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

Describes operations with an average stopped delay in the range of 55.1 to 80.0 seconds per vehicle. This is considered to be the limit of acceptable delay in many cases. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are a frequent occurrence.

Describes operations with an average stopped delay in excess of 80.0 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with over-saturation, i.e., when arrival flow rates exceed the capacity of the intersection. It may also occur at high v / c ratios with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

Level of Service Definitions Unsignalized Intersections

Level of Service A:

Level of Service B:

Level of Service C:

Level of Service D:

Level of Service E:

Level of Service F :

Average delay per vehicles for impeded movements is less than 10 seconds. There is little or no delay with typically low side street and/or main street traffic.

Average stopped delays from 10.1 seconds to 15.0 seconds. Short delays, many acceptable gaps in main street traffic stream.

Average delay per vehicle ranges from 15.1 to 25.0 seconds. Average traffic delays with frequent gaps in main street traffic.

Average delays from 25.1 to 35.0 seconds for impeded movements. Long traffic delays for impeded movements due in part to a limited number of acceptable gaps.

Average delays in the 35.1 to 50.0 second range. May experience very long delays for impeded movements with a very small number of acceptable gaps in the traffic stream.

Average vehicle delays of over 50.0 seconds. Extreme traffic delays with virtually no acceptable gaps in main street traffic.

Glossary

Approach: A set of lanes accommodating all left-turn, through, and right-turn movements arriving at an intersection from a given direction.

Arterial: Signalized streets that serve primarily through traffic and provide access to abutting properties as a secondary function.

Average Stopped Delay: The total time vehicles are stopped in an intersection approach or lane group during a specified time interval divided by the volume departing from the approach or lane group during the same time period, in seconds per vehicle.

Background Traffic: Traffic volumes that will be on the roadway network without the presence of the proposed development.

Bypass Lane: A one-lane widening on a two-lane roadway that allows through traffic to pass by waiting left-turn traffic.

Capacity: The maximum rate of flow at which persons or vehicles can be reasonably expected to traverse a point or uniform segment of a lane or roadway during a specified time period under prevailing roadway, traffic, and control conditions; usually expressed as vehicles per hour or persons per hour.

Conflicting Traffic Volume: The volume of traffic which conflicts with a specific movement at an intersection.

Corridor: A lineal study area aligned with a roadway facility in which traffic, land use, right-ofway, environmental, and other factors are evaluated to determine future transportation facility needs.

Cycle: Any complete sequence of traffic signal indications.
Cycle Length: The total time for a traffic signal to complete one cycle.
Design Hour Volume: The traffic volume for the design hour, usually a forecast of the relevant peak hour volume, in vehicles per hour.

Diverted Linked Trips: Trips from the traffic volume on roadways within the vicinity of the generator but which requires a diversion from that roadway to another roadway to gain access to the site.

Driveway Offset: Distance between driveways on opposite sides of a roadway, measured parallel to roadway.

Freeway: A multi-lane divided highway having a minimum of two lanes for exclusive use of traffic in each direction and full control of access and egress.

Gaps (Critical Gap): The median time headway between vehicles in a major traffic stream which will permit side-street vehicles to cross through or merge with the major traffic stream.

Green Time: The actual length of the "green" indication for a given movement at a signalized intersection.

Level of Service: A qualitative measure describing operational conditions within a traffic stream; generally described in terms of such factors as speed and travel time, delay, freedom to maneuver, traffic interruptions, comfort and convenience, and safety.

Operational Analysis: A use of capacity analysis to determine the prevailing level of service on an existing or projected facility, with known or projected traffic, roadway, and control conditions. This analysis can involve a particular location, such as an intersection or a corridor.

Pass-by Trips: Trips made as intermediate stops on the way from an origin to a primary trip destination.

Peak Hour (AM): The one hour period in the morning representing the highest hourly volume of traffic flow on the adjacent public street system.

Peak Hour (PM): The one hour period in the afternoon or evening representing the highest hourly volume of traffic flow on the adjacent public street system.

Peak Hour Factor: The hourly volume during the maximum volume hour of the day divided by four times the peak 15-minute flow within the peak hour; a measure of traffic demand fluctuation within the peak hour.

Phase: The part of the signal cycle allocated to any combination of traffic movements receiving the right-of-way simultaneously during one or more intervals.

Roadway Conditions: Geometric characteristics of a street or highway, including the type of facility, number and width of lanes (by direction), shoulder widths and lateral clearances, design speed, etc.

Service Drive: A roadway (usually private) that provides internal access to two or more uses.
Site Traffic: Existing or projected vehicular traffic generated by the development.
Study Area: The geographic area containing site access points and critical intersections (and connecting highway segments) which are impacted by the site-traffic generated by the development, and should be evaluated.

System Improvements: Added lanes, signal improvements, and other roadway improvements not considered site-related improvements.

Traffic Impact: The adverse impact on intersection Level of Service and/or street and highway safety and operations as determined by the criteria and procedures set forth in this handbook.

Trip (Directional Trip): A single or one-direction vehicle movement with either the origin or the destination (exiting or entering) inside a study site.

Trip Distribution: The distribution or assignment of site traffic into site driveways and study area roadways/intersections based upon expected direction of approach and departure.

Unsignalized Intersection: Any intersection not controlled by traffic signals.
Volume: The number of persons or vehicles passing a point on a lane or roadway during some time interval, such as one hour or during an average day.

Volume-to-Capacity Ratio (V/C): The ratio of demand flow rate to capacity for a traffic facility.

COUNT/DATA SUMMARIES

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:

 Progressive AE

 Progressive AE}

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Cherry Bend
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 24L

File Name : TMC1_M-22\&CherryBend_6-24-15
Site Code : TMC_1
Start Date : 6/24/2015
Page No : 1

	Bay Shore Drive (M-22) Southbound					Marina Village Drive Westbound					Bay Shore Drive (M-22) Northbound					Cherry Bend Road Eastbound					
Start Time	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	3	71	0	0	74	0	0	1	0	1	1	43	17	0	61	53	0	1	0	54	190
07:15 AM	2	86	1	0	89	0	0	0	0	0	1	60	21	0	82	70	0	0	0	70	241
07:30 AM	2	131	0	0	133	0	0	5	0	5	2	73	20	0	95	90	0	3	0	93	326
07:45 AM	3	137	0	0	140	0	0	3	0	3	3	64	27	0	94	88	2	2	0	92	329
Total	10	425	1	0	436	0	0	9	0	9	7	240	85	0	332	301	2	6	0	309	1086
08:00 AM	1	119	0	0	120	0	0	3	0	3	1	79	38	0	118	76	1	2	0	79	320
08:15 AM	1	109	0	0	110	0	0	1	0	1	1	78	23	0	102	66	0	0	0	66	279
08:30 AM	6	105	0	0	111	0	0	1	0	1	2	71	35	0	108	64	0	5	0	69	289
08:45 AM	3	99	0	0	102	0	0	1	0	1	3	78	37	0	118	63	0	4	0	67	288
Total	11	432	0	0	443	0	0	6	0	6	7	306	133	0	446	269	1	11	0	281	1176

**** BREAK ****

04:00 PM	6	107	2	0	115	0	2	12	0	14	5	104	37	0	146	61	1	5	0	67	342
04:15 PM	4	128	0	0	132	1	1	6	0	8	8	99	55	0	162	59	1	6	0	66	368
04:30 PM	0	118	1	0	119	1	5	7	0	13	18	116	50	0	184	69	0	5	0	74	390
04:45 PM	2	124	0	0	126	2	1	12	0	15	10	140	35	0	185	66	2	5	0	73	399
Total	12	477	3	0	492	4	9	37	0	50	41	459	177	0	677	255	4	21	0	280	1499
05:00 PM	3	117	0	0	120	0	3	8	2	13	21	136	66	0	223	51	0	4	0	55	411
05:15 PM	4	126	2	0	132	1	2	15	0	18	12	117	68	0	197	60	2	7	0	69	416
05:30 PM	1	122	0	0	123	1	1	13	0	15	8	139	52	0	199	59	1	2	1	63	400
05:45 PM	4	112	2	0	118	0	2	9	0	11	5	122	58	0	185	50	1	4	0	55	369
Total	12	477	4	0	493	2	8	45	2	57	46	514	244	0	804	220	4	17	1	242	1596
Grand Total	45	1811	8	0	1864	6	17	97	2	122	101	1519	639	0	2259	1045	11	55	1	1112	5357
Apprch \%	2.4	97.2	0.4	0		4.9	13.9	79.5	1.6		4.5	67.2	28.3	0		94	1	4.9	0.1		
Total \%	0.8	33.8	0.1	0	34.8	0.1	0.3	1.8	0	2.3	1.9	28.4	11.9	0	42.2	19.5	0.2	1	0	20.8	
Pass Cars	44	1768	8	0	1820	6	17	95	0	118	101	1474	626	0	2201	1030	10	51	0	1091	5230
\% Pass Cars	97.8	97.6	100	0	97.6	100	100	97.9	0	96.7	100	97	98	0	97.4	98.6	90.9	92.7	0	98.1	97.6
Single Units	1	39	0	0	40	0	0	2	0	2	0	37	11	0	48	11	1	3	0	15	105
\% Single Units	2.2	2.2	0	0	2.1	0	0	2.1	0	1.6	0	2.4	1.7	0	2.1	1.1	9.1	5.5	0	1.3	2
Heavy Trucks	0	4	0	0	4	0	0	0	0	0	0	8	2	0	10	4	0	1	0	5	19
\% Heavy Trucks	0	0.2	0	0	0.2	0	0	0	0	0	0	0.5	0.3	0	0.4	0.4	0	1.8	0	0.4	0.4
Ped	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	1	1	3
\% Ped	0	0	0	0	0	0	0	0	100	1.6	0	0	0	0	0	0	0	0	100	0.1	0.1

Comments: 4 hour traffic study conducted during typical weekday (Wednesday) from 7:00-9:00 AM morning \& 4:00-6:00 PM afternoon peak hours.
Signalized intersection, no ped. signals. Miovision SCU video camera located within NE intersection quadrant.

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Cherry Bend
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 24L

File Name : TMC1_M-22\&CherryBend_6-24-15
Site Code : TMC_1
Start Date: 6/24/2015
Page No : 2

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:

Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Cherry Bend
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 24L

File Name : TMC1_M-22\&CherryBend_6-24-15
Site Code : TMC 1
Start Date : 6/24/2015
Page No : 3

	Bay Shore Drive (M-22) Southbound				Marina Village Drive Westbound				Bay Shore Drive (M-22) Northbound				Cherry Bend Road Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:30 AM																	
07:30 AM	2	131	0	133	0	0	5	5	2	73	20	95	90	0	3	93	326
07:45 AM	3	137	0	140	0	0	3	3	3	64	27	94	88	2	2	92	329
08:00 AM	1	119	0	120	0	0	3	3	1	79	38	118	76	1	2	79	320
08:15 AM	1	109	0	110	0	0	1	1	1	78	23	102	66	0	0	66	279
Total Volume	7	496	0	503	0	0	12	12	7	294	108	409	320	3	7	330	1254
\% App. Total	1.4	98.6	0		0	0	100		1.7	71.9	26.4		97	0.9	2.1		
PHF	. 583	. 905	. 000	. 898	. 000	. 000	. 600	. 600	. 583	. 930	. 711	. 867	. 889	. 375	. 583	. 887	. 953
Pass Cars	7	492	0	499	0	0	12	12	7	273	105	385	316	3	6	325	1221
\% Pass Cars	100	99.2	0	99.2	0	0	100	100	100	92.9	97.2	94.1	98.8	100	85.7	98.5	97.4
Single Units	0	4	0	4	0	0	0	0	0	16	2	18	2	0	1	3	25
\% Single Units	0	0.8	0	0.8	0	0	0	0	0	5.4	1.9	4.4	0.6	0	14.3	0.9	2.0
Heavy Trucks	0	0	0	0	0	0	0	0	0	5	1	6	2	0	0	2	8
\% Heavy Trucks	0	0	0	0	0	0	0	0	0	1.7	0.9	1.5	0.6	0	0	0.6	0.6
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:

Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Cherry Bend
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 24L

File Name : TMC1_M-22\&CherryBend_6-24-15
Site Code : TMC_1
Start Date : 6/24/2015
Page No : 4

	Bay Shore Drive (M-22) Southbound				Marina Village Drive Westbound				Bay Shore Drive (M-22) Northbound				Cherry Bend Road Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 12:45 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:45 PM																	
04:45 PM	2	124	0	126	2	1	12	15	10	140	35	185	66	2	5	73	399
05:00 PM	3	117	0	120	0	3	8	11	21	136	66	223	51	0	4	55	409
05:15 PM	4	126	2	132	1	2	15	18	12	117	68	197	60	2	7	69	416
05:30 PM	1	122	0	123	1	1	13	15	8	139	52	199	59	1	2	62	399
Total Volume	10	489	2	501	4	7	48	59	51	532	221	804	236	5	18	259	1623
\% App. Total	2	97.6	0.4		6.8	11.9	81.4		6.3	66.2	27.5		91.1	1.9	6.9		
PHF	. 625	. 970	. 250	. 949	. 500	. 583	. 800	. 819	. 607	. 950	. 813	. 901	. 894	. 625	. 643	. 887	. 975
Pass Cars	9	474	2	485	4	7	47	58	51	525	219	795	230	4	17	251	1589
\% Pass Cars	90.0	96.9	100	96.8	100	100	97.9	98.3	100	98.7	99.1	98.9	97.5	80.0	94.4	96.9	97.9
Single Units	1	14	0	15	0	0	1	1	0	5	2	7	5	1	1	7	30
\% Single Units	10.0	2.9	0	3.0	0	0	2.1	1.7	0	0.9	0.9	0.9	2.1	20.0	5.6	2.7	1.8
Heavy Trucks	0	1	0	1	0	0	0	0	0	2	0	2	1	0	0	1	4
\% Heavy Trucks	0	0.2	0	0.2	0	0	0	0	0	0.4	0	0.2	0.4	0	0	0.4	0.2
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Cherry Bend Weather: Sunny, Dry PM 70's Count By: Miovison Video SCU 24L

File Name : TMC1_M-22\&CherryBend_6-24-15
Site Code : TMC 1
Start Date : 6/24/2015
Page No : 5

Aerial Photo

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Grandview
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4BT

File Name : TMC3_M-22\&Grandview_6-24-15
Site Code : TMC_3
Start Date : 6/24/2015
Page No :1

Groups Printed- Pass Cars - Single Units - Heavy Trucks - Ped

	Bay Shore Drive (M-22) Southbound					Elmwood Marina Westbound					Bay Shore Drive (M-22) Northbound					Grandview Road Eastbound					
Start Time	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	5	121	1	0	127	0	0	0	0	0	0	56	0	0	56	13	0	4	0	17	200
07:15 AM	2	156	1	0	159	0	0	0	0	0	4	86	0	0	90	17	0	4	0	21	270
07:30 AM	3	219	1	0	223	0	0	0	0	0	2	104	3	0	109	18	0	4	0	22	354
07:45 AM	10	218	0	0	228	0	0	0	0	0	5	96	9	0	110	20	1	7	0	28	366
Total	20	714	3	0	737	0	0	0	0	0	11	342	12	0	365	68	1	19	0	88	1190
08:00 AM	6	189	0	0	195	0	0	0	0	0	9	118	7	0	134	28	1	7	0	36	365
08:15 AM	7	169	0	0	176	0	0	2	0	2	8	107	5	0	120	23	0	4	0	27	325
08:30 AM	4	167	1	0	172	0	0	0	0	0	4	105	5	0	114	14	0	5	1	20	306
08:45 AM	6	157	1	0	164	0	0	0	0	0	2	121	9	0	132	14	0	8	0	22	318
Total	23	682	2	0	707	0	0	2	0	2	23	451	26	0	500	79	1	24	1	105	1314
09:00 AM	9	169	0	0	178	0	0	0	0	0	2	134	6	0	142	11	0	7	0	18	338
09:15 AM	3	132	1	0	136	0	0	3	0	3	5	122	7	0	134	12	0	7	0	19	292
09:30 AM	3	144	2	0	149	0	0	1	0	1	4	131	5	0	140	10	0	5	0	15	305
09:45 AM	8	171	1	0	180	0	0	1	0	1	3	128	4	0	135	12	0	11	0	23	339
Total	23	616	4	0	643	0	0	5	0	5	14	515	22	0	551	45	0	30	0	75	1274
10:00 AM	5	157	0	0	162	0	0	2	0	2	3	107	13	0	123	10	1	4	0	15	302
10:15 AM	6	145	0	0	151	0	0	1	0	1	5	122	4	0	131	12	0	3	0	15	298
10:30 AM	5	153	0	0	158	0	0	1	0	1	5	147	6	0	158	9	0	5	0	14	331
10:45 AM	6	151	0	0	157	1	0	1	0	2	6	137	11	0	154	13	0	6	0	19	332
Total	22	606	0	0	628	1	0	5	0	6	19	513	34	0	566	44	1	18	0	63	1263
11:00 AM	6	165	1	0	172	1	1	2	0	4	10	144	12	0	166	10	0	4	0	14	356
11:15 AM	7	162	1	0	170	0	0	2	0	2	5	141	10	0	156	28	0	5	0	33	361
11:30 AM	4	144	2	0	150	0	0	0	0	0	0	119	12	0	131	16	0	5	0	21	302
11:45 AM	5	137	1	2	145	1	0	0	0	1	9	146	24	0	179	20	0	5	0	25	350
Total	22	608	5	2	637	2	1	4	0	7	24	550	58	0	632	74	0	19	0	93	1369

12:00 PM	5	141	1	0	147	1	1	4	0	6	4	145	26	0	175	13	1	4	2	20	348
12:15 PM	11	146	2	2	161	0	0	4	0	4	4	139	13	0	156	16	0	1	0	17	338
12:30 PM	4	149	2	0	155	0	0	1	0	1	2	147	27	0	176	15	1	6	0	22	354
12:45 PM	2	177	1	0	180	1	0	1	0	2	6	153	17	0	176	29	3	4	0	36	394
Total	22	613	6	2	643	2	1	10	0	13	16	584	83	0	683	73	5	15	2	95	1434
01:00 PM	12	138	0	0	150	1	1	1	0	3	7	171	14	0	192	14	0	4	0	18	363
01:15 PM	6	130	1	0	137	1	0	1	0	2	9	157	14	0	180	14	0	12	0	26	345
01:30 PM	4	131	1	0	136	1	0	2	0	3	10	158	16	0	184	13	0	4	0	17	340
01:45 PM	10	156	2	0	168	0	0	0	0	0	10	148	21	0	179	13	0	8	0	21	368
Total	32	555	4	0	591	3		4	0	8	36	634	65	0	735	54	0	28	0	82	1416

02:00 PM	9	152	1	0	162	1	1	0	0	2	7	146	19	0	172	19	0	9	2	30	366
02:15 PM	6	149	1	0	156	0	0	1	0	1	4	166	17	0	187	16	0	1	0	17	361
02:30 PM	4	153	3	0	160	1	0	3	0	4	4	167	22	0	193	17	0	2	0	19	376
02:45 PM	4	155	4	0	163	2	0	1	0	3	8	154	20	0	182	19	0	7	0	26	374
Total	23	609	9	0	641	4	1	5	0	10	23	633	78	0	734	71	0	19	2	92	1477

03:00 PM	7	149	2	0	158	1	0	4	0	5	7	137	11	0	155	18	0	7	0	25	343
03:15 PM	2	160	2	0	164	2	0	3	0	5	11	164	18	0	193	18	0	4	0	22	384
03:30 PM	3	157	2	0	162	0	0	0	0	0	11	178	19	0	208	21	3	4	0	28	398
03:45 PM	5	186	1	0	192	2	0	3	0	5	7	166	28	0	201	17	0	2	0	19	417
Total	17	652	7	0	676	5	0	10	0	15	36	645	76	0	757	74	3	17	0	94	1542

04:00 PM	5	173	1	2	181	1	0	2	0	3	7	149	28	0	184	17	0	6	0	23	391
04:15 PM	6	178	1	0	185	2	0	2	0	4	2	171	29	0	202	13	0	5	0	18	409
04:30 PM	4	205	2	0	211	3	0	6	0	9	8	183	24	1	216	15	0	8	0	23	459
04:45 PM	12	199	0	0	211	3	0	2	1	6	8	201	23	0	232	29	0	8	0	37	486
Total	27	755	4	2	788	9	0	12	1	22	25	704	104	1	834	74	0	27	0	101	1745

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Grandview
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4BT

File Name : TMC3_M-22\&Grandview_6-24-15
Site Code : TMC_3
Start Date : 6/24/2015
Page No : 2

	Bay Shore Drive (M-22) Southbound					Elmwood Marina Westbound					Bay Shore Drive (M-22) Northbound					Grandview Road Eastbound					
Start Time	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Int. Total
05:00 PM	8	185	2	0	195	1	0	5	1	7	6	221	23	0	250	22	0	3	1	26	478
05:15 PM	9	179	2	0	190	1	0	3	0	4	5	206	41	0	252	31	1	1	0	33	479
05:30 PM	6	199	1	0	206	2	0	1	0	3	7	200	35	0	242	18	0	9	1	28	479
05:45 PM	9	162	2	0	173	0	0	3	0	3	9	195	24	0	228	14	0	7	0	21	425
Total	32	725	7	0	764	4	0	12	1	17	27	822	123	0	972	85	1	20	2	108	1861
06:00 PM	1	154	0	0	155	1	0	2	0	3	10	186	27	0	223	20	0	8	0	28	409
06:15 PM	4	123	2	0	129	0	0	1	0	1	6	165	13	0	184	14	2	2	0	18	332
06:30 PM	8	130	3	0	141	0	0	0	0	0	8	138	23	0	169	24	0	8	0	32	342
06:45 PM	3	130	1	0	134	1	0	2	0	3	8	147	15	0	170	23	0	7	0	30	337
Total	16	537	6	0	559	2	0	5	0	7	32	636	78	0	746	81	2	25	0	108	1420
Grand Total	279	7672	57	6	8014	32	4	74	2	112	286	7029	759	1	8075	822	14	261	7	1104	17305
Apprch \%	3.5	95.7	0.7	0.1		28.6	3.6	66.1	1.8		3.5	87	9.4	0		74.5	1.3	23.6	0.6		
Total \%	1.6	44.3	0.3	0	46.3	0.2	0	0.4	0	0.6	1.7	40.6	4.4	0	46.7	4.8	0.1	1.5	0	6.4	
Pass Cars	269	7456	55	0	7780	32	4	74	0	110	285	6832	750	0	7867	806	14	252	0	1072	16829
\% Pass Cars	96.4	97.2	96.5	0	97.1	100	100	100	0	98.2	99.7	97.2	98.8	0	97.4	98.1	100	96.6	0	97.1	97.2
Single Units	10	168	2	0	180	0	0	0	0	0	0	163	8	0	171	14	0	9	0	23	374
\% Single Units	3.6	2.2	3.5	0	2.2	0	0	0	0	0	0	2.3	1.1	0	2.1	1.7	0	3.4	0	2.1	2.2
Heavy Trucks	0	48	0	0	48	0	0	0	0	0	1	34	1	0	36	2	0	0	0	2	86
\% Heavy Trucks	0	0.6	0	0	0.6	0	0	0	0	0	0.3	0.5	0.1	0	0.4	0.2	0	0	0	0.2	0.5
Ped	0	0	0	6	6	0	0	0	2	2	0	0	0	1	1	0	0	0	7	7	16
\% Ped	0	0	0	100	0.1	0	0	0	100	1.8	0	0	0	100	0	0	0	0	100	0.6	0.1

Comments: 12 hour traffic study conducted during typical weekday (Wednesday) from 7:00 AM morning - 7:00 PM afternoon peak hours. Non-signalized intersection. Miovision SCU video camera located within SE intersection quadrant.

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:

 Progressive AE

 Progressive AE}

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Grandview
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4BT

File Name : TMC3_M-22\&Grandview_6-24-15
Site Code : TMC_3
Start Date : 6/24/2015
Page No : 3

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Grandview
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4BT
File Name : TMC3_M-22\&Grandview_6-24-15
Site Code : TMC_3
Start Date : 6/24/2015
Page No : 4

	Bay Shore Drive (M-22) Southbound				Elmwood Marina Westbound				Bay Shore Drive (M-22) Northbound				Grandview Road Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 09:45 AM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:30 AM																	
07:30 AM	3	219	1	223	0	0	0	0	2	104	3	109	18	0	4	22	354
07:45 AM	10	218	0	228	0	0	0	0	5	96	9	110	20	1	7	28	366
08:00 AM	6	189	0	195	0	0	0	0	9	118	7	134	28	1	7	36	365
08:15 AM	7	169	0	176	0	0	2	2	8	107	5	120	23	0	4	27	325
Total Volume	26	795	1	822	0	0	2	2	24	425	24	473	89	2	22	113	1410
\% App. Total	3.2	96.7	0.1		0	0	100		5.1	89.9	5.1		78.8	1.8	19.5		
PHF	. 650	. 908	. 250	. 901	. 000	. 000	. 250	. 250	. 667	. 900	. 667	. 882	. 795	. 500	. 786	. 785	. 963
Pass Cars	26	786	1	813	0	0	2	2	24	400	23	447	88	2	19	109	1371
\% Pass Cars	100	98.9	100	98.9	0	0	100	100	100	94.1	95.8	94.5	98.9	100	86.4	96.5	97.2
Single Units	0	7	0	7	0	0	0	0	0	20	1	21	1	0	3	4	32
\% Single Units	0	0.9	0	0.9	0	0	0	0	0	4.7	4.2	4.4	1.1	0	13.6	3.5	2.3
Heavy Trucks	0	2	0	2	0	0	0	0	0	5	0	5	0	0	0	0	7
\% Heavy Trucks	0	0.3	0	0.2	0	0	0	0	0	1.2	0	1.1	0	0	0	0	0.5
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Grandview
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4BT

File Name : TMC3_M-22\&Grandview_6-24-15
Site Code : TMC_3
Start Date : 6/24/2015
Page No : 5

	Bay Shore Drive (M-22) Southbound				Elmwood Marina Westbound				Bay Shore Drive (M-22) Northbound				Grandview Road Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 10:00 AM to 01:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 12:30 PM																	
12:30 PM	4	149	2	155	0	0	1	1	2	147	27	176	15	1	6	22	354
12:45 PM	2	177	1	180	1	0	1	2	6	153	17	176	29	3	4	36	394
01:00 PM	12	138	0	150	1	1	1	3	7	171	14	192	14	0	4	18	363
01:15 PM	6	130	1	137	1	0	1	2	9	157	14	180	14	0	12	26	345
Total Volume	24	594	4	622	3	1	4	8	24	628	72	724	72	4	26	102	1456
\% App. Total	3.9	95.5	0.6		37.5	12.5	50		3.3	86.7	9.9		70.6	3.9	25.5		
PHF	. 500	. 839	. 500	. 864	. 750	. 250	1.00	. 667	. 667	. 918	. 667	. 943	. 621	. 333	. 542	. 708	. 924
Pass Cars	23	578	4	605	3	1	4	8	23	612	72	707	71	4	26	101	1421
\% Pass Cars	95.8	97.3	100	97.3	100	100	100	100	95.8	97.5	100	97.7	98.6	100	100	99.0	97.6
Single Units	1	10	0	11	0	0	0	0	0	10	0	10	1	0	0	1	22
\% Single Units	4.2	1.7	0	1.8	0	0	0	0	0	1.6	0	1.4	1.4	0	0	1.0	1.5
Heavy Trucks	0	6	0	6	0	0	0	0	1	6	0	7	0	0	0	0	13
\% Heavy Trucks	0	1.0	0	1.0	0	0	0	0	4.2	1.0	0	1.0	0	0	0	0	0.9
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Grandview
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4BT

File Name : TMC3_M-22\&Grandview_6-24-15
Site Code : TMC_3
Start Date : 6/24/2015
Page No : 6

	Bay Shore Drive (M-22) Southbound				Elmwood Marina Westbound				Bay Shore Drive (M-22) Northbound				Grandview Road Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 02:00 PM to 06:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:45 PM																	
04:45 PM	12	199	0	211	3	0	2	5	8	201	23	232	29	0	8	37	485
05:00 PM	8	185	2	195	1	0	5	6	6	221	23	250	22	0	3	25	476
05:15 PM	9	179	2	190	1	0	3	4	5	206	41	252	31	1	1	33	479
05:30 PM	6	199	1	206	2	0	1	3	7	200	35	242	18	0	9	27	478
Total Volume	35	762	5	802	7	0	11	18	26	828	122	976	100	1	21	122	1918
\% App. Total	4.4	95	0.6		38.9	0	61.1		2.7	84.8	12.5		82	0.8	17.2		
PHF	. 729	. 957	. 625	. 950	. 583	. 000	. 550	. 750	. 813	. 937	. 744	. 968	. 806	. 250	. 583	. 824	. 989
Pass Cars	33	733	5	771	7	0	11	18	26	822	122	970	99	1	21	121	1880
\% Pass Cars	94.3	96.2	100	96.1	100	0	100	100	100	99.3	100	99.4	99.0	100	100	99.2	98.0
Single Units	2	26	0	28	0	0	0	0	0	4	0	4	1	0	0	1	33
\% Single Units	5.7	3.4	0	3.5	0	0	0	0	0	0.5	0	0.4	1.0	0	0	0.8	1.7
Heavy Trucks	0	3	0	3	0	0	0	0	0	2	0	2	0	0	0	0	5
\% Heavy Trucks	0	0.4	0	0.4	0	0	0	0	0	0.2	0	0.2	0	0	0	0	0.3
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Grandview
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4BT

File Name : TMC3_M-22\&Grandview_6-24-15
Site Code : TMC_3
Start Date : 6/24/2015
Page No
: 7

Aerial Photo

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Brewery Creek
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 34G

File Name : TMC4_M-22\&BreweryCk_6-24-15
Site Code : TMC_4
Start Date : 6/24/2015
Page No : 1

	Bay Shore Drive (M-22) Southbound					Greilickville Harbor Park Westbound					Bay Shore Drive (M-22) Northbound					Brewery Creek Eastbound					
Start Time	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	0	143	0	0	143	0	0	1	0	1	0	60	3	0	63	0	0	1	0	1	208
07:15 AM	1	175	0	0	176	1	0	0	0	1	1	99	1	0	101	1	0	0	0	1	279
07:30 AM	0	240	1	0	241	0	0	0	0	0	1	118	2	0	121	3	0	0	0	3	365
07:45 AM	0	238	0	0	238	1	0	0	0	1	0	117	3	0	120	1	0	0	0	1	360
Total	1	796	1	0	798	2	0	1	0	3	2	394	9	0	405	5	0	1	0	6	1212
08:00 AM	1	215	0	0	216	0	0	0	0	0	0	139	3	0	142	3	0	0	0	3	361
08:15 AM	1	200	0	0	201	0	0	0	1	1	0	132	0	0	132	1	0	1	1	3	337
08:30 AM	0	184	0	0	184	0	0	0	0	0	0	126	1	0	127	1	0	0	0	1	312
08:45 AM	1	185	0	0	186	0	0	0	0	0	0	149	1	0	150	0	0	0	0	0	336
Total	3	784	0	0	787	0	0	0	1	1	0	546	5	0	551	5	0	1	1	7	1346

**** BREAK ****

04:00 PM	1	203	1	0	205	2	0	6	0	8	3	196	1	0	200	4	0	1	0	5	418
04:15 PM	1	194	0	0	195	1	0	3	0	4	4	215	5	0	224	7	0	1	0	8	431
04:30 PM	3	230	2	0	235	2	0	1	0	3	5	228	2	0	235	4	0	1	3	8	481
04:45 PM	1	231	5	1	238	0	0	3	0	3	12	242	3	1	258	3	0	1	3	7	506
Total	6	858	8	1	873	5	0	13	0	18	24	881	11	1	917	18	0	4	6	28	1836
05:00 PM	0	223	3	3	229	0	0	4	0	4	8	260	3	0	271	2	0	0	0	2	506
05:15 PM	0	223	2	2	227	3	0	3	2	8	2	260	6	0	268	6	0	0	0	6	509
05:30 PM	1	223	0	0	224	3	0	1	0	4	7	251	1	0	259	9	0	0	1	10	497
05:45 PM	0	179	5	0	184	3	0	3	0	6	5	244	3	0	252	3	0	0	0	3	445
Total	1	848	10	5	864	9	0	11	2	22	22	1015	13	0	1050	20	0	0	1	21	1957
Grand Total	11	3286	19	6	3322	16	0	25	3	44	48	2836	38	1	2923	48	0	6	8	62	6351
Apprch \%	0.3	98.9	0.6	0.2		36.4	0	56.8	6.8		1.6	97	1.3	0		77.4	0	9.7	12.9		
Total \%	0.2	51.7	0.3	0.1	52.3	0.3	0	0.4	0	0.7	0.8	44.7	0.6	0	46	0.8	0	0.1	0.1	1	
Pass Cars	9	3215	19	0	3243	16	0	25	0	41	48	2756	37	0	2841	47	0	6	0	53	6178
\% Pass Cars	81.8	97.8	100	0	97.6	100	0	100	0	93.2	100	97.2	97.4	0	97.2	97.9	0	100	0	85.5	97.3
Single Units	2	58	0	0	60	0	0	0	0	0	0	70	1	0	71	1	0	0	0	1	132
\% Single Units	18.2	1.8	0	0	1.8	0	0	0	0	0	0	2.5	2.6	0	2.4	2.1	0	0	0	1.6	2.1
Heavy Trucks	0	13	0	0	13	0	0	0	0	0	0	10	0	0	10	0	0	0	0	0	23
\% Heavy Trucks	0	0.4	0	0	0.4	0	0	0	0	0	0	0.4	0	0	0.3	0	0	0	0	0	0.4
Ped	0	0	0	6	6	0	0	0	3	3	0	0	0	1	1	0	0	0	8	8	18
\% Ped	0	0	0	100	0.2	0	0	0	100	6.8	0	0	0	100	0	0	0	0	100	12.9	0.3

Comments: 4 hour traffic study conducted during typical weekday (Wednesday) from 7:00-9:00 AM morning \& 4:00-6:00 PM afternoon peak hours. Nonsignalized intersection, mid-block ped. X-walk located at north leg. Miovision SCU video camera located within NE intersection quadrant.

Traffic Data Collection，TDC
 tdccounts．com
 Phone：（586）786－5407
 Traffic Study Performed For：
 Progressive AE

Project：Elmwood M－22 Traffic Study
Location：M－22 \＆Brewery Creek
Weather：Sunny，Dry PM 70＇s
Count By：Miovison Video SCU 34G

File Name ：TMC4＿M－22\＆BreweryCk＿6－24－15
Site Code ：TMC＿4
Start Date ：6／24／2015
Page No ： 2

58		
	Pass Cars Single Units Heavy Trucks Ped 07：00 AM 05：45 PM	

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Brewery Creek
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 34G

File Name : TMC4_M-22\&BreweryCk_6-24-15
Site Code : TMC_4
Start Date : 6/24/2015
Page No : 3

	Bay Shore Drive (M-22) Southbound				Greilickville Harbor Park Westbound				Bay Shore Drive (M-22) Northbound				Brewery Creek Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:30 AM																	
07:30 AM	0	240	1	241	0	0	0	0	1	118	2	121	3	0	0	3	365
07:45 AM	0	238	0	238	1	0	0	1	0	117	3	120	1	0	0	1	360
08:00 AM	1	215	0	216	0	0	0	0	0	139	3	142	3	0	0	3	361
08:15 AM	1	200	0	201	0	0	0	0	0	132	0	132	1	0	1	2	335
Total Volume	2	893	1	896	1	0	0	1	1	506	8	515	8	0	1	9	1421
\% App. Total	0.2	99.7	0.1		100	0	0		0.2	98.3	1.6		88.9	0	11.1		
PHF	. 500	. 930	. 250	. 929	. 250	. 000	. 000	. 250	. 250	. 910	. 667	. 907	. 667	. 000	. 250	. 750	. 973
Pass Cars	1	882	1	884	1	0	0	1	1	473	8	482	8	0	1	9	1376
\% Pass Cars	50.0	98.8	100	98.7	100	0	0	100	100	93.5	100	93.6	100	0	100	100	96.8
Single Units	1	8	0	9	0	0	0	0	0	28	0	28	0	0	0	0	37
\% Single Units	50.0	0.9	0	1.0	0	0	0	0	0	5.5	0	5.4	0	0	0	0	2.6
Heavy Trucks	0	3	0	3	0	0	0	0	0	5	0	5	0	0	0	0	8
\% Heavy Trucks	0	0.3	0	0.3	0	0	0	0	0	1.0	0	1.0	0	0	0	0	0.6
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE
Project: Elmwood M-22 Traffic Study
Location: M-22 \& Brewery Creek
File Name : TMC4_M-22\&BreweryCk_6-24-15
Site Code : TMC 4
Start Date : 6/24/2015

Count By: Miovison Video SCU 34G

Page No : 4

	Bay Shore Drive (M-22) Southbound				Greilickville Harbor Park Westbound				Bay Shore Drive (M-22) Northbound				Brewery Creek Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total

Peak Hour Analysis From 12:45 PM to 05:45 PM - Peak 1 of 1

Peak Hour for En	se	Begins	4:45														
04:45 PM	1	231	5	237	0	0	3	3	12	242	3	257	3	0	1	4	501
05:00 PM	0	223	3	226	0	0	4	4	8	260	3	271	2	0	0	2	503
05:15 PM	0	223	2	225	3	0	3	6	2	260	6	268	6	0	0	6	505
05:30 PM	1	223	0	224	3	0	1	4	7	251	1	259	9	0	0	9	496
Total Volume	2	900	10	912	6	0	11	17	29	1013	13	1055	20	0	1	21	2005
\% App. Total	0.2	98.7	1.1		35.3	0	64.7		2.7	96	1.2		95.2	0	4.8		
PHF	. 500	. 974	. 500	. 962	. 500	. 000	. 688	. 708	. 604	. 974	. 542	. 973	. 556	. 000	. 250	. 583	. 993
Pass Cars	2	870	10	882	6	0	11	17	29	1004	12	1045	19	0	1	20	1964
\% Pass Cars	100	96.7	100	96.7	100	0	100	100	100	99.1	92.3	99.1	95.0	0	100	95.2	98.0
Single Units	0	26	0	26	0	0	0	0	0	7	1	8	1	0	0	1	35
\% Single Units	0	2.9	0	2.9	0	0	0	0	0	0.7	7.7	0.8	5.0	0	0	4.8	1.7
Heavy Trucks	0	4	0	4	0	0	0	0	0	2	0	2	0	0	0	0	6
\% Heavy Trucks	0	0.4	0	0.4	0	0	0	0	0	0.2	0	0.2	0	0	0	0	0.3
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study Location: M-22 \& Brewery Creek Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 34G

File Name : TMC4_M-22\&BreweryCk_6-24-15
Site Code : TMC_4
Start Date : 6/24/2015
Page No : 5

Aerial Photo

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Carter
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4SY

File Name : TMC5_M-22\&Carter_6-24-15
Site Code : TMC 5
Start Date : 6/24/2015
Page No : 1

	Bay Shore Drive (M-22) Southbound					Westbound					Bay Shore Drive (M-22) Northbound					Carter Road Eastbound					
Start Time	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	0	138	0	0	138	0	0	0	0	0	0	73	8	0	81	2	0	0	0	2	221
07:15 AM	2	178	0	0	180	0	0	0	0	0	0	103	10	0	113	9	0	2	0	11	304
07:30 AM	4	228	0	0	232	0	0	0	0	0	0	121	8	0	129	15	0	2	0	17	378
07:45 AM	3	215	0	0	218	0	0	0	0	0	0	131	8	0	139	17	0	0	0	17	374
Total	9	759	0	0	768	0	0	0	0	0	0	428	34	0	462	43	0	4	0	47	1277
08:00 AM	7	215	0	0	222	0	0	0	0	0	0	143	5	0	148	9	0	2	0	11	381
08:15 AM	7	207	0	0	214	0	0	0	0	0	0	131	4	0	135	9	0	6	0	15	364
08:30 AM	4	206	0	0	210	0	0	0	0	0	0	131	7	0	138	10	0	0	0	10	358
08:45 AM	5	167	0	0	172	0	0	0	0	0	0	158	14	2	174	9	0	2	0	11	357
Total	23	795	0	0	818	0	0	0	0	0	0	563	30	2	595	37	0	10	0	47	1460

**** BREAK ****

04:00 PM	7	210	0	0	217	0	0	0	0	0	0	207	17	5	229	14	0	2	0	16	462
04:15 PM	4	208	0	1	213	0	0	0	0	0	0	248	14	3	265	13	0	0	0	13	491
04:30 PM	6	241	0	0	247	0	0	0	0	0	0	234	15	3	252	12	0	4	1	17	516
04:45 PM	6	241	0	3	250	0	0	0	0	0	0	268	12	5	285	18	0	2	1	21	556
Total	23	900	0	4	927	0	0	0	0	0	0	957	58	16	1031	57	0	8	2	67	2025
05:00 PM	6	227	0	0	233	0	0	0	0	0	0	278	15	1	294	14	0	1	2	17	544
05:15 PM	11	232	0	3	246	0	0	0	0	0	0	276	20	4	300	5	0	1	0	6	552
05:30 PM	2	240	0	0	242	0	0	0	0	0	0	268	18	0	286	18	0	6	3	27	555
05:45 PM	10	213	0	0	223	0	0	0	0	0	0	262	13	0	275	12	0	3	0	15	513
Total	29	912	0	3	944	0	0	0	0	0	0	1084	66	5	1155	49	0	11	5	65	2164
Grand Total	84	3366	0	7	3457	0	0	0	0	0	0	3032	188	23	3243	186	0	33	7	226	6926
Apprch \%	2.4	97.4	0	0.2		0	0	0	0		0	93.5	5.8	0.7		82.3	0	14.6	3.1		
Total \%	1.2	48.6	0	0.1	49.9	0	0	0	0	0	0	43.8	2.7	0.3	46.8	2.7	0	0.5	0.1	3.3	
Pass Cars	82	3294	0	0	3376	0	0	0	0	0	0	2949	184	0	3133	182	0	32	0	214	6723
\% Pass Cars	97.6	97.9	0	0	97.7	0	0	0	0	0	0	97.3	97.9	0	96.6	97.8	0	97	0	94.7	97.1
Single Units	2	57	0	0	59	0	0	0	0	0	0	73	0	0	73	1	0	1	0	2	134
\% Single Units	2.4	1.7	0	0	1.7	0	0	0	0	0	0	2.4	0	0	2.3	0.5	0	3	0	0.9	1.9
Heavy Trucks	0	15	0	0	15	0	0	0	0	0	0	10	4	0	14	3	0	0	0	3	32
\% Heavy Trucks	0	0.4	0	0	0.4	0	0	0	0	0	0	0.3	2.1	0	0.4	1.6	0	0	0	1.3	0.5
Ped	0	0	0	7	7	0	0	0	0	0	0	0	0	23	23	0	0	0	7	7	37
\% Ped	0	0	0	100	0.2	0	0	0	0	0	0	0	0	100	0.7	0	0	0	100	3.1	0.5

Comments: 4 hour traffic study conducted during typical weekday (Wednesday) from 7:00-9:00 AM morning \& 4:00-6:00 PM afternoon peak hours. Nonsignalized T intersection. Miovision SCU video camera located within NE intersection quadrant.

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Carter
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4SY

File Name : TMC5_M-22\&Carter_6-24-15
Site Code : TMC_5
Start Date : 6/24/2015
Page No : 2

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Carter
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4SY

File Name : TMC5_M-22\&Carter_6-24-15
Site Code : TMC 5
Start Date : 6/24/2015
Page No : 3

	Bay Shore Drive (M-22) Southbound				Westbound				Bay Shore Drive (M-22) Northbound				Carter Road Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:30 AM																	
07:30 AM	4	228	0	232	0	0	0	0	0	121	8	129	15	0	2	17	378
07:45 AM	3	215	0	218	0	0	0	0	0	131	8	139	17	0	0	17	374
08:00 AM	7	215	0	222	0	0	0	0	0	143	5	148	9	0	2	11	381
08:15 AM	7	207	0	214	0	0	0	0	0	131	4	135	9	0	6	15	364
Total Volume	21	865	0	886	0	0	0	0	0	526	25	551	50	0	10	60	1497
\% App. Total	2.4	97.6	0		0	0	0		0	95.5	4.5		83.3	0	16.7		
PHF	. 750	. 948	. 000	. 955	. 000	. 000	. 000	. 000	. 000	. 920	. 781	. 931	. 735	. 000	. 417	. 882	. 982
Pass Cars	21	852	0	873	0	0	0	0	0	490	25	515	48	0	10	58	1446
\% Pass Cars	100	98.5	0	98.5	0	0	0	0	0	93.2	100	93.5	96.0	0	100	96.7	96.6
Single Units	0	10	0	10	0	0	0	0	0	30	0	30	0	0	0	0	40
\% Single Units	0	1.2	0	1.1	0	0	0	0	0	5.7	0	5.4	0	0	0	0	2.7
Heavy Trucks	0	3	0	3	0	0	0	0	0	6	0	6	2	0	0	2	11
\% Heavy Trucks	0	0.3	0	0.3	0	0	0	0	0	1.1	0	1.1	4.0	0	0	3.3	0.7
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Carter
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4SY

File Name : TMC5_M-22\&Carter_6-24-15
Site Code : TMC 5
Start Date : 6/24/2015
Page No : 4

	Bay Shore Drive (M-22) Southbound				Westbound				Bay Shore Drive (M-22) Northbound				Carter Road Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 12:45 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:45 PM																	
04:45 PM	6	241	0	247	0	0	0	0	0	268	12	280	18	0	2	20	547
05:00 PM	6	227	0	233	0	0	0	0	0	278	15	293	14	0	1	15	541
05:15 PM	11	232	0	243	0	0	0	0	0	276	20	296	5	0	1	6	545
05:30 PM	2	240	0	242	0	0	0	0	0	268	18	286	18	0	6	24	552
Total Volume	25	940	0	965	0	0	0	0	0	1090	65	1155	55	0	10	65	2185
\% App. Total	2.6	97.4	0		0	0	0		0	94.4	5.6		84.6	0	15.4		
PHF	. 568	. 975	. 000	. 977	. 000	. 000	. 000	. 000	. 000	. 980	. 813	. 976	. 764	. 000	. 417	. 677	. 990
Pass Cars	24	915	0	939	0	0	0	0	0	1078	65	1143	53	0	10	63	2145
\% Pass Cars	96.0	97.3	0	97.3	0	0	0	0	0	98.9	100	99.0	96.4	0	100	96.9	98.2
Single Units	1	22	0	23	0	0	0	0	0	9	0	9	1	0	0	1	33
\% Single Units	4.0	2.3	0	2.4	0	0	0	0	0	0.8	0	0.8	1.8	0	0	1.5	1.5
Heavy Trucks	0	3	0	3	0	0	0	0	0	3	0	3	1	0	0	1	7
\% Heavy Trucks	0	0.3	0	0.3	0	0	0	0	0	0.3	0	0.3	1.8	0	0	1.5	0.3
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC tdecounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& Carter
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 4SY

File Name : TMC5_M-22\&Carter_6-24-15
Site Code : TMC_5
Start Date : 6/24/2015
Page No : 5

Aerial Photo

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& M-72
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU $2 Z 4$

File Name : TMC6_M-22\&M-72_6-24-15
Site Code : TMC 6
Start Date : 6/24/2015
Page No : 1

	Bay Shore Drive (M-22) Southbound					Sunny County Driveway Westbound					Grandview Parkway (M-22) Northbound					Traverse Highway (M-72) Eastbound					
Start Time	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	24	121	0	0	145	0	0	0	0	0	0	79	36	0	115	62	0	13	0	75	335
07:15 AM	40	145	0	0	185	0	0	0	0	0	0	118	40	0	158	95	0	18	0	113	456
07:30 AM	31	187	0	0	218	0	0	0	0	0	0	115	72	0	187	112	0	23	0	135	540
07:45 AM	35	198	0	0	233	0	0	0	0	0	0	133	65	0	198	134	0	33	4	171	602
Total	130	651	0	0	781	0	0	0	0	0	0	445	213	0	658	403	0	87	4	494	1933
08:00 AM	39	186	0	0	225	0	0	0	0	0	0	140	65	0	205	88	0	40	21	149	579
08:15 AM	34	191	0	0	225	0	0	0	0	0	0	119	59	0	178	82	0	37	2	121	524
08:30 AM	26	204	0	0	230	0	0	1	0	1	0	141	68	0	209	91	0	20	8	119	559
08:45 AM	30	155	0	0	185	0	0	0	0	0	0	141	57	0	198	95	0	46	12	153	536
Total	129	736	0	0	865	0	0	1	0	1	0	541	249	0	790	356	0	143	43	542	2198

**** BREAK ****

04:00 PM	46	174	0	0	220	0	0	1	0	1	0	192	107	0	299	81	0	33	0	114	634
04:15 PM	49	176	0	0	225	0	0	0	0	0	2	225	112	0	339	74	0	50	1	125	689
04:30 PM	35	229	0	0	264	0	0	0	0	0	0	217	89	0	306	79	0	48	1	128	698
04:45 PM	23	236	0	0	259	1	0	0	0	1	0	245	94	0	339	84	0	47	0	131	730
Total	153	815	0	0	968	1	0	1	0	2	2	879	402	0	1283	318	0	178	2	498	2751
05:00 PM	39	222	0	0	261	1	1	0	1	3	0	259	94	0	353	92	0	57	1	150	767
05:15 PM	36	215	0	1	252	0	0	0	2	2	0	261	105	0	366	81	0	58	0	139	759
05:30 PM	29	221	0	0	250	0	0	0	0	0	0	253	99	0	352	85	0	53	0	138	740
05:45 PM	21	221	0	0	242	1	0	0	0	1	0	245	108	0	353	61	0	50	1	112	708
Total	125	879	0	1	1005	2	1	0	3	6	0	1018	406	0	1424	319	0	218	2	539	2974
Grand Total	537	3081	0	1	3619	3	1	2	3	9	2	2883	1270	0	4155	1396	0	626	51	2073	9856
Apprch \%	14.8	85.1	0	0		33.3	11.1	22.2	33.3		0	69.4	30.6	0		67.3	0	30.2	2.5		
Total \%	5.4	31.3	0	0	36.7	0	0	0	0	0.1	0	29.3	12.9	0	42.2	14.2	0	6.4	0.5	21	
Pass Cars	528	3006	0	0	3534	3	1	2	0	6	2	2816	1202	0	4020	1341	0	616	0	1957	9517
\% Pass Cars	98.3	97.6	0	0	97.7	100	100	100	0	66.7	100	97.7	94.6	0	96.8	96.1	0	98.4	0	94.4	96.6
Single Units	8	58	0	0	66	0	0	0	0	0	0	52	55	0	107	33	0	10	0	43	216
\% Single Units	1.5	1.9	0	0	1.8	0	0	0	0	0	0	1.8	4.3	0	2.6	2.4	0	1.6	0	2.1	2.2
Heavy Trucks	1	17	0	0	18	0	0	0	0	0	0	15	13	0	28	22	0	0	0	22	68
\% Heavy Trucks	0.2	0.6	0	0	0.5	0	0	0	0	0	0	0.5	1	0	0.7	1.6	0	0	0	1.1	0.7
Ped	0	0	0	1	1	0	0	0	3	3	0	0	0	0	0	0	0	0	51	51	55
\% Ped	0	0	0	100	0	0	0	0	100	33.3	0	0	0	0	0	0	0	0	100	2.5	0.6

Comments: 4 hour traffic study conducted during typical weekday (Wednesday) from 7:00-9:00 AM morning \& 4:00-6:00 PM afternoon peak hours.
Signalized intersection with ped. signals for west, north \& south legs. drants,. no push buttons. Miovision SCU video camera located within SW intersection quadrant.

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& M-72
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 274

File Name : TMC6_M-22\&M-72_6-24-15
Site Code : TMC_6
Start Date : 6/24/2015
Page No : 2

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& M-72
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU $2 Z 4$

File Name : TMC6_M-22\&M-72_6-24-15
Site Code : TMC 6
Start Date : 6/24/2015
Page No : 3

	Bay Shore Drive (M-22) Southbound				Sunny County Driveway Westbound				Grandview Parkway (M-22) Northbound				Traverse Highway (M-72) Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:45 AM																	
07:45 AM	35	198	0	233	0	0	0	0	0	133	65	198	134	0	33	167	598
08:00 AM	39	186	0	225	0	0	0	0	0	140	65	205	88	0	40	128	558
08:15 AM	34	191	0	225	0	0	0	0	0	119	59	178	82	0	37	119	522
08:30 AM	26	204	0	230	0	0	1	1	0	141	68	209	91	0	20	111	551
Total Volume	134	779	0	913	0	0	1	1	0	533	257	790	395	0	130	525	2229
\% App. Total	14.7	85.3	0		0	0	100		0	67.5	32.5		75.2	0	24.8		
PHF	. 859	. 955	. 000	. 980	. 000	. 000	. 250	. 250	. 000	. 945	. 945	. 945	. 737	. 000	. 813	. 786	. 932
Pass Cars	131	768	0	899	0	0	1	1	0	498	231	729	376	0	128	504	2133
\% Pass Cars	97.8	98.6	0	98.5	0	0	100	100	0	93.4	89.9	92.3	95.2	0	98.5	96.0	95.7
Single Units	3	8	0	11	0	0	0	0	0	26	22	48	12	0	2	14	73
\% Single Units	2.2	1.0	0	1.2	0	0	0	0	0	4.9	8.6	6.1	3.0	0	1.5	2.7	3.3
Heavy Trucks	0	3	0	3	0	0	0	0	0	9	4	13	7	0	0	7	23
\% Heavy Trucks	0	0.4	0	0.3	0	0	0	0	0	1.7	1.6	1.6	1.8	0	0	1.3	1.0
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE
Project: Elmwood M-22 Traffic Study
Location: M-22 \& M-72
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU $2 Z 4$

File Name : TMC6_M-22\&M-72_6-24-15
Site Code : TMC 6
Start Date : 6/24/2015
Page No : 4

	Bay Shore Drive (M-22) Southbound				Sunny County Driveway Westbound				Grandview Parkway (M-22) Northbound				Traverse Highway (M-72) Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 12:45 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:45 PM																	
04:45 PM	23	236	0	259	1	0	0	1	0	245	94	339	84	0	47	131	730
05:00 PM	39	222	0	261	1	1	0	2	0	259	94	353	92	0	57	149	765
05:15 PM	36	215	0	251	0	0	0	0	0	261	105	366	81	0	58	139	756
05:30 PM	29	221	0	250	0	0	0	0	0	253	99	352	85	0	53	138	740
Total Volume	127	894	0	1021	2	1	0	3	0	1018	392	1410	342	0	215	557	2991
\% App. Total	12.4	87.6	0		66.7	33.3	0		0	72.2	27.8		61.4	0	38.6		
PHF	. 814	. 947	. 000	. 978	. 500	. 250	. 000	. 375	. 000	. 975	. 933	. 963	. 929	. 000	. 927	. 935	. 977
Pass Cars	125	865	0	990	2	1	0	3	0	1010	386	1396	334	0	213	547	2936
\% Pass Cars	98.4	96.8	0	97.0	100	100	0	100	0	99.2	98.5	99.0	97.7	0	99.1	98.2	98.2
Single Units	2	23	0	25	0	0	0	0	0	6	2	8	4	0	2	6	39
\% Single Units	1.6	2.6	0	2.4	0	0	0	0	0	0.6	0.5	0.6	1.2	0	0.9	1.1	1.3
Heavy Trucks	0	6	0	6	0	0	0	0	0	2	4	6	4	0	0	4	16
\% Heavy Trucks	0	0.7	0	0.6	0	0	0	0	0	0.2	1.0	0.4	1.2	0	0	0.7	0.5
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-22 \& M-72
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 2 Z4

File Name : TMC6_M-22\&M-72_6-24-15
Site Code : TMC 6
Start Date : 6/24/2015
Page No : 5

Aerial Photo

Traffic Data Collection, TDC
 tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-72 \& Bay
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 1TM

File Name : TMC7_M-72\&Bay_6-24-15
Site Code : TMC_7
Start Date : 6/24/2015
Page No : 1

	Southbound					Traverse Hwy. (M-72) Westbound					Bay Street Northbound					Traverse Hwy. (M-72) Eastbound					
Start Time	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Rgt	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	40	19	5	64	6	0	3	1	10	4	70	0	0	74	148
07:15 AM	0	0	0	0	0	0	56	25	6	87	10	0	6	0	16	11	104	0	0	115	218
07:30 AM	0	0	0	0	0	0	78	24	4	106	10	0	12	0	22	11	131	0	0	142	270
07:45 AM	0	0	0	0	0	0	59	43	9	111	21	0	11	1	33	18	153	0	0	171	315
Total	0	0	0	0	0	0	233	111	24	368	47	0	32	2	81	44	458	0	0	502	951
08:00 AM	0	0	0	0	0	0	65	40	18	123	25	0	7	0	32	11	103	0	0	114	269
08:15 AM	0	0	0	0	0	0	59	35	2	96	21	0	3	0	24	14	98	0	0	112	232
08:30 AM	0	0	0	0	0	0	68	26	16	110	16	0	12	4	32	7	96	0	0	103	245
08:45 AM	0	0	0	0	0	0	59	26	14	99	33	0	8	0	41	15	110	0	0	125	265
Total	0	0	0	0	0	0	251	127	50	428	95	0	30	4	129	47	407	0	0	454	1011

**** BREAK ****

04:00 PM	0	0	0	0	0	0	119	32	0	151	18	0	13	0	31	23	99	0	0	122	304
04:15 PM	0	0	0	0	0	0	120	39	1	160	24	0	13	0	37	22	98	0	0	120	317
04:30 PM	0	0	0	0	0	0	104	24	0	128	30	0	12	0	42	25	96	0	0	121	291
04:45 PM	0	0	0	0	0	0	89	28	3	120	28	0	9	0	37	11	108	0	0	119	276
Total	0	0	0	0	0	0	432	123	4	559	100	0	47	0	147	81	401	0	0	482	1188
05:00 PM	0	0	0	0	0	0	109	21	2	132	29	0	19	0	48	33	120	0	0	153	333
05:15 PM	0	0	0	0	0	0	118	24	0	142	32	0	14	0	46	15	110	0	0	125	313
05:30 PM	0	0	0	0	0	0	105	23	3	131	23	0	10	0	33	21	115	0	0	136	300
05:45 PM	0	0	0	0	0	0	115	14	2	131	23	0	8	0	31	8	88	0	0	96	258
Total	0	0	0	0	0	0	447	82	7	536	107	0	51	0	158	77	433	0	0	510	1204
Grand Total	0	0	0	0	0	0	1363	443	85	1891	349	0	160	6	515	249	1699	0	0	1948	4354
Apprch \%	0	0	0	0		0	72.1	23.4	4.5		67.8	0	31.1	1.2		12.8	87.2	0	0		
Total \%	0	0	0	0	0	0	31.3	10.2	2	43.4	8	0	3.7	0.1	11.8	5.7	39	0	0	44.7	
Pass Cars	0	0	0	0	0	0	1297	438	0	1735	347	0	158	0	505	249	1639	0	0	1888	4128
\% Pass Cars	0	0	0	0	0	0	95.2	98.9	0	91.8	99.4	0	98.8	0	98.1	100	96.5	0	0	96.9	94.8
Single Units	0	0	0	0	0	0	51	4	0	55	2	0	2	0	4	0	37	0	0	37	96
\% Single Units	0	0	0	0	0	0	3.7	0.9	0	2.9	0.6	0	1.2	0	0.8	0	2.2	0	0	1.9	2.2
Heavy Trucks	0	0	0	0	0	0	15	1	0	16	0	0	0	0	0	0	23	0	0	23	39
\% Heavy Trucks	0	0	0	0	0	0	1.1	0.2	0	0.8	0	0	0	0	0	0	1.4	0	0	1.2	0.9
Ped	0	0	0	0	0	0	0	0	85	85	0	0	0	6	6	0	0	0	0	0	91
\% Ped	0	0	0	0	0	0	0	0	100	4.5	0	0	0	100	1.2	0	0	0	0	0	2.1

Comments: 4 hour traffic study conducted during typical weekday (Wednesday) from 7:00-9:00 AM morning \& 4:00-6:00 PM afternoon peak hours.
Flashing red signal for EB Traverse Hwy. at Bay Street, Signal is located within 100' feet of M-22 \& M-72 traffic signalized intersection and has left turns overlapping .Miovision SCU video camera located within NW intersection quadrant.

Traffic Data Collection, TDC tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:

Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-72 \& Bay
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 1TM

File Name : TMC7_M-72\&Bay_6-24-15
Site Code : TMC_7
Start Date : 6/24/2015
Page No : 2

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-72 \& Bay
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 1TM

File Name : TMC7_M-72\&Bay_6-24-15
Site Code : TMC 7
Start Date : 6/24/2015
Page No : 3

	Southbound				Traverse Hwy. (M-72) Westbound				Bay Street Northbound				Traverse Hwy. (M-72) Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:30 AM																	
07:30 AM	0	0	0	0	0	78	24	102	10	0	12	22	11	131	0	142	266
07:45 AM	0	0	0	0	0	59	43	102	21	0	11	32	18	153	0	171	305
08:00 AM	0	0	0	0	0	65	40	105	25	0	7	32	11	103	0	114	251
08:15 AM	0	0	0	0	0	59	35	94	21	0	3	24	14	98	0	112	230
Total Volume	0	0	0	0	0	261	142	403	77	0	33	110	54	485	0	539	1052
\% App. Total	0	0	0		0	64.8	35.2		70	0	30		10	90	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 837	. 826	. 960	. 770	. 000	. 688	. 859	. 750	. 792	000	. 788	. 862
Pass Cars	0	0	0	0	0	234	138	372	77	0	33	110	54	471	0	525	1007
\% Pass Cars	0	0	0	0	0	89.7	97.2	92.3	100	0	100	100	100	97.1	0	97.4	95.7
Single Units	0	0	0	0	0	22	3	25	0	0	0	0	0	10	0	10	35
\% Single Units	0	0	0	0	0	8.4	2.1	6.2	0	0	0	0	0	2.1	0	1.9	3.3
Heavy Trucks	0	0	0	0	0	5	1	6	0	0	0	0	0	4	0	4	10
\% Heavy Trucks	0	0	0	0	0	1.9	0.7	1.5	0	0	0	0	0	0.8	0	0.7	1.0
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC
 tdccounts.com

Phone: (586) 786-5407
Traffic Study Performed For:
Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-72 \& Bay
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 1TM

File Name : TMC7_M-72\&Bay_6-24-15
Site Code : TMC 7
Start Date : 6/24/2015
Page No : 4

	Southbound				Traverse Hwy. (M-72) Westbound				Bay Street Northbound				Traverse Hwy. (M-72) Eastbound				
Start Time	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Rgt	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 12:45 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire	ersect	Begin	$04: 45$														
04:45 PM	0	0	0	0	0	89	28	117	28	0	9	37	11	108	0	119	273
05:00 PM	0	0	0	0	0	109	21	130	29	0	19	48	33	120	0	153	331
05:15 PM	0	0	0	0	0	118	24	142	32	0	14	46	15	110	0	125	313
05:30 PM	0	0	0	0	0	105	23	128	23	0	10	33	21	115	0	136	297
Total Volume	0	0	0	0	0	421	96	517	112	0	52	164	80	453	0	533	1214
\% App. Total	0	0	0		0	81.4	18.6		68.3	0	31.7		15	85	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 892	. 857	. 910	. 875	. 000	. 684	. 854	. 606	. 944	. 000	. 871	. 917
Pass Cars	0	0	0	0	0	413	96	509	111	0	51	162	80	444	0	524	1195
\% Pass Cars	0	0	0	0	0	98.1	100	98.5	99.1	0	98.1	98.8	100	98.0	0	98.3	98.4
Single Units	0	0	0	0	0	4	0	4	1	0	1	2	0	5	0	5	11
\% Single Units	0	0	0	0	0	1.0	0	0.8	0.9	0	1.9	1.2	0	1.1	0	0.9	0.9
Heavy Trucks	0	0	0	0	0	4	0	4	0	0	0	0	0	4	0	4	8
\% Heavy Trucks	0	0	0	0	0	1.0	0	0.8	0	0	0	0	0	0.9	0	0.8	0.7
Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Ped	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Data Collection, TDC tdccounts.com
 Phone: (586) 786-5407
 Traffic Study Performed For:
 Progressive AE

Project: Elmwood M-22 Traffic Study
Location: M-72 \& Bay
Weather: Sunny, Dry PM 70's
Count By: Miovison Video SCU 1TM

File Name : TMC7_M-72\&Bay_6-24-15
Site Code : TMC_7
Start Date : 6/24/2015
Page No : 5

Aerial Photo

Project: Elmwood Twp. Traffic Study Count Type: 48 Hr . ATR Volume Count Weather: Clear, Dry 70's Degs. Count By: M.Matich Pav't : Asphalt 1 Lane
tdccounts.com
Phone (586) 786-5407
Traffic Study Performed For:
Progressive AE

ATR_1 M-22\&Grandview_EB
Grandview Road (75' West of M-22) Station ID: Eastbound Site Code: ATR 1 EB Date Start: 23-Jun-15

Start Time	$\begin{gathered} \text { Mon } \\ \text { 22-Jun-15 } \end{gathered}$	Tue	Wed	Thu	Fri	Average Day	Sat	Sun	Week Average
12:00 AM	*	*	5	6	*	6	*	*	\6
01:00	*	*	1	3	*	2	*	*	2
02:00	*	*	5	2	*	4	*	*	-4
03:00	*	*	4	1	*	2	*	*	2
04:00	*	*	6	4	*	5	*	*	- 5
05:00	*	*	14	18	*	16	*	*	16
06:00	*	*	54	29	*	42	*	*	42
07:00	*	*	87	102	*	94	*	*	94
08:00	*	*	106	104	*	105	*	*	105
09:00	*	*	71	74	*	72	*	*	72
10:00	*	*	65	82	*	74	*	*	74
11:00	*	68	91	84	*	81	*	*	81
12:00 PM	*	75	90	83	*	83	*	*	83
01:00	*	85	75	*	*	80	*	*	80
02:00	*	91	91	*	*	91	*	*	91
03:00	*	85	94	*	*	90	*	*	90
04:00	*	73	95	*	*	84	*	*	84
05:00	*	95	99	*	*	97	*	*	97
06:00	*	84	103	*	*	94	*	*	94
07:00	*	72	75	*	*	74	*	*	74
08:00	*	78	68	*	*	73	*	*	73
09:00	*	40	47	*	*	44	*	*	44
10:00	*	21	36	*	*	28	*	*	28
11:00	*	16	16	*	*	16	*	*	16
Total	0	883	1398	592	0	1357	0	0	1357

ADT ADT 1,354 AADT 1,354

Project: Elmwood Twp. Traffic Study Count Type: 48 Hr . ATR Volume Count Weather: Clear, Dry 70's Degs. Count By: M.Matich Pav't : Asphalt 2 Lanes
tdccounts.com
Phone (586) 786-5407
Traffic Study Performed For:
Progressive AE

ATR_1 M-22\&Grandview_NB
Bay Shore Drive (M-22) (200' South of Grandview Road) Station ID: Northbound Site Code: ATR 1 NB Date Start: 23-Jun-15

ADT ADT 10,899 AADT 10,899

Project: Elmwood Twp. Traffic Study Count Type: 48 Hr . ATR Volume Count Weather: Clear, Dry 70's Degs. Count By: M.Matich Pav't : Asphalt 2 Lanes
tdccounts.com
Phone (586) 786-5407
Traffic Study Performed For:
Progressive AE

ATR_1 M-22\&Grandview_SB
Bay Shore Drive (M-22) (125' North of Grandview Road) Station ID: Southbound Site Code: ATR 1 SB Date Start: 23-Jun-15

Start Time	$\begin{gathered} \text { Mon } \\ \text { 22-Jun-15 } \end{gathered}$	Tue	Wed	Thu	Fri			Average Day		Sat	Sun		Week Average		
12:00 AM	*	*	29	19	*			24		*	*		[24		
01:00	*	*	19	15	*			17		*	*		17		
02:00	*	*	18	17	*			18		*	*		П18		
03:00	*	*	13	16	*			14		*	*		14		
04:00	*	*	56	49	*			52		*	*		52		
05:00	*	*	122	124	*			123		*	*		123		
06:00	*	*	346	306	*			326		*	*		326		
07:00	*	*	757	717	*			737		*	*		737		
08:00	*	*	713	693	*			703		*	*		703		
09:00	*	*	665	704	*			684		*	*		684		
10:00	*	*	653	713	*			683		*	*		683		
11:00	*	643	642	669	*			651		*	*		651		
12:00 PM	*	646	670	*	*			658		*	*		658		
01:00	*	653	617	*	*			635		*	*		635		
02:00	*	681	663	*	*			672		*	*		672		
03:00	*	760	700	*	*			730		*	*		730		
04:00	*	749	825	*	*			787		*	*		787		
05:00	*	755	796	*	*			776		*	*		776		
06:00	*	582	585	*	*			584		*	*		584		
07:00	*	432	439	*	*			436		*	*		436		
08:00	*	337	366	*	*			352		*	*		352		
09:00	*	217	238	*	*			228		*	*		$228 \square$		
10:00	*	136	136	*	*			136		*	*		136		
11:00	*	65	49	*	*			57		*	*		57		
Total	0	6656	10117	4042	0			10083		0	0		10083		
\% Avg. WkDay	0.0\%	66.0\%	100.3\%	40.1\%	0.0\%			100.0\%							
\% Avg. Week	0.0\%	66.0\%	100.3\%	40.1\%	0.0\%			100.0\%		0.0\%	0.0\%				
AM Peak	-	11:00	07:00	07:00	-		-	07:00	-	-	-	-	07:00	-	-
Vol.	-	643	757	717	-		-	737	-	-	-	-	737	-	-
PM Peak	-	15:00	16:00	-	-		-	16:00	-	-	-	-	16:00	-	-
Vol.	-	760	825	-	-		-	787	-	-	-	-	787	-	-
Total		06656	5610117	74042		0		10083			00		10083		

ADT ADT 10,039 AADT 10,039

Progressive AE

O

Project: Elmwood Twp. Traffic Study Count Type: 48 Hr . ATR Volume Count Weather: Clear, Dry 70's Degs. Count By: M.Matich Pav't : Asphalt 1 Lane
tdccounts.com
Phone (586) 786-5407
Traffic Study Performed For:
Progressive AE

ATR_2 M-22\&Carter_EB
Carter Road (100' West of M-22)
Station ID: Eastbound Site Code: ATR EB Date Start: 23-Jun-15

tdccounts.com
Phone (586) 786-5407
Traffic Study Performed For:
Progressive AE

ATR_2 M-22\&Carter_NB
Bay Shore Drive (M-22)
(250' South of Carter Road) Station ID: Northbound Site Code: ATR 2 NB Date Start: 23-Jun-15

Start Time	$\begin{gathered} \text { Mon } \\ \text { 22-Jun-15 } \end{gathered}$	Tue	Wed	Thu	Fri			Average Day		Sat		Sun		Week Average			
12:00 AM	*	*	78	84	*			81		*		*		81			
01:00	*	*	48	49	*			48		*		*		48			
02:00	*	*	27	21	*			24		*		*		\\|24			
03:00	*	*	26	22	*			24		*		*		24			
04:00	*	*	24	24	*			24		*		*		\\|24			
05:00	*	*	66	59	*			62		*		*		62			
06:00	*	*	189	167	*			178		*		*		178			
07:00	*	*	469	486	*			478		*		*		478			
08:00	*	*	614	608	*			611		*		*		611			
09:00	*	*	697	628	*			662		*		*		662			
10:00	*	715	687	645	*			682		*		*		682			
11:00	*	787	796	847	*			810		*		*		810			
12:00 PM	*	825	815	*	*			820		*		*		820			
01:00	*	887	882	*	*			884		*		*		884			
02:00	*	830	857	*	*			844		*		*		844			
03:00	*	904	906	*	*			905		*		*		905			
04:00	*	1001	1038	*	*			1020		*		*		1020			
05:00	*	1165	1213	*	*			1189		*		*		1189			
06:00	*	888	996	*	*			942		*		*		942			
07:00	*	634	671	*	*			652		*		*		652			
08:00	*	531	569	*	*			550		*		*		550			
09:00	*	411	466	*	*			438		*		*		438			
10:00	*	285	253	*	*			269		*		*		269			
11:00	*	151	148	*	*			150		*		*		150			
Total	0	10014	12535	3640	0			12347		0		0		12347			
\% Avg. WkDay	0.0\%	81.1\%	101.5\%	29.5\%	0.0\%			100.0\%									
\% Avg. Week	0.0\%	81.1\%	101.5\%	29.5\%	0.0\%			100.0\%		0.0\%		0.0\%					
AM Peak	-	11:00	11:00	11:00	-		-	11:00	-	-		-	-	11:00	-	-	
Vol.	-	787	796	847	-		-	810	-	-		-	-	810	-	-	
PM Peak	-	17:00	17:00	-	-		-	17:00	-	-		-	-	17:00	-	-	
Vol.	-	1165	1213	-	-		-	1189	-	-		-	-	1189	-	-	
Total		010014	1412535	53640		0		12347			0		0	12347			

ADT ADT 12,289 AADT 12,289

Project: Elmwood Twp. Traffic Study Count Type: 48 Hr . ATR Volume Count Weather: Clear, Dry 70's Degs. Count By: M.Matich Pav't : Asphalt 2 Lanes
tdccounts.com
Phone (586) 786-5407
Traffic Study Performed For:
Progressive AE

ATR_2 M-22\&Carter_SB
Bay Shore Drive (M-22)
(300' North of Carter Road)
Station ID: Southbound
Site Code: ATR 2 SB
Date Start: 23-Jun-15

Start Time	$\begin{gathered} \text { Mon } \\ \text { 22-Jun-15 } \end{gathered}$	Tue	Wed	Thu	Fri			Average Day		Sat		Sun		Week Average		
12:00 AM	*	*	35	28	*			32		*		*		[32		
01:00	*	*	28	17	*			22		*		*		22		
02:00	*	*	18	18	*			18		*		*		\|18		
03:00	*	*	18	18	*			18		*		*		18		
04:00	*	*	60	51	*			56		*		*		56		
05:00	*	*	132	137	*			134		*		*		134		
06:00	*	*	382	332	*			357		*		*		357		
07:00	*	*	787	785	*			786		*		*		786		
08:00	*	*	833	772	*			802		*		*		802		
09:00	*	*	727	767	*			747		*		*		747		
10:00	*	763	706	776	*			748		*		*		748		
11:00	*	740	772	789	*			767		*		*		767		
12:00 PM	*	771	779	*	*			775		*		*		775		
01:00	*	749	693	*	*			721		*		*		721		
02:00	*	807	778	*	*			792		*		*		792		
03:00	*	846	842	*	*			844		*		*		844		
04:00	*	855	954	*	*			904		*		*		904		
05:00	*	877	959	*	*			918		*		*		918		
06:00	*	661	702	*	*			682		*		*		682		
07:00	*	509	543	*	*			526		*		*		526		
08:00	*	416	504	*	*			460		*		*		460		
09:00	*	267	338	*	*			302		*		*		$302 \square$		
10:00	*	169	161	*	*			165		*		*		165		
11:00	*	78	66	*	*			72		*		*		72		
Total	0	8508	11817	4490	0			11648		0		0		11648		
\% Avg. WkDay	0.0\%	73.0\% 1	101.5\%	38.5\%	0.0\%			100.0\%								
\% Avg. Week	0.0\%	73.0\% 101	101.5\%	38.5\%	0.0\%			100.0\%		0.0\%		0.0\%				
AM Peak	-	10:00	08:00	11:00	-		-	08:00	-	-		-	-	08:00	-	-
Vol.	-	763	833	789	-		-	802	-	-		-	-	802	-	-
PM Peak	-	17:00	17:00	-	-		-	17:00	-	-		-	-	17:00	-	-
Vol.	-	877	959	-	-		-	918	-	-		-	-	918	-	-
Total		08508	0811817	4490		0		11648			0		0	11648		

ADT ADT 11,584 AADT 11,584
Grand Traverse County Road Commission

Latitude: 0' 0.0000 South號
Grand Traverse County Road Commission

M-22 at Center Pointe
 South Bound

 At Center Pointe/ GreilickvilleLatitude: 0 ' 0.0000 Undefined

Grand Traverse County Road Commission

Latitude: 0' 0.0000 South號
Grand Traverse County Road Commission

M-22 at Center Pointe
 South Bound

 At Center Pointe/ GreilickvilleLatitude: 0 ' 0.0000 Undefined

Grand Traverse County Road Commission

Grand Traverse County Road Commission
M-22 at Greilickville Harbor Park
South Bound
Page 1
Untitled Vo
Untitled Vo
Station ID:
Late Start: 04-Jun-15
Latitude: 0' 0.0000 Undefined

ADT 10,389 AADT 10,389
Grand Traverse County Road Commission

Grand Traverse County Road Commission
M-22 at Greilickville Harbor Park
South Bound
Page 1
Untitled Vo
Untitled Vo
Station ID:
Late Start: 04-Jun-15
Latitude: 0' 0.0000 Undefined

ADT 10,389 AADT 10,389

DETAILED SYNCHRO ANALYSIS OF
 EXISTING CONDITIONS

	4	\rightarrow	\checkmark	7	4	4	4	4	p	(\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow					${ }^{1}$	个		${ }^{*}$	个	
Volume (veh/h)	22	2	75	0	0	0	24	425	24	1	795	26
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.79	0.79	0.79	0.92	0.92	0.92	0.88	0.88	0.88	0.90	0.90	0.90
Hourly flow rate (vph)	28	3	95	0	0	0	27	483	27	1	883	29
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								WLTL			TWLTL	
Median storage veh)								2			2	
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	1438	1465	898	1533	1466	497	912			510		
vC 1 , stage 1 conf vol	900	900		551	551							
vC 2 , stage 2 conf vol	538	565		982	914							
vCu , unblocked vol	1438	1465	898	1533	1466	497	912			510		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	6.1	5.5		6.1	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	90	99	72	100	100	100	96			100		
cM capacity (veh/h)	288	303	338	176	285	573	747			1055		
Direction, Lane \#	EB 1	NB 1	NB 2	SB 1	SB 2							
Volume Total	125	27	510	1	912							
Volume Left	28	27	0	1	0							
Volume Right	95	0	27	0	29							
cSH	325	747	1700	1055	1700							
Volume to Capacity	0.39	0.04	0.30	0.00	0.54							
Queue Length 95th (ft)	44	3	0	0	0							
Control Delay (s)	22.9	10.0	0.0	8.4	0.0							
Lane LOS	C	B		A								
Approach Delay (s)	22.9	0.5		0.0								
Approach LOS	C											
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utilization			56.0\%		CU Level	Service			B			
Analysis Period (min)			15									

	4	\rightarrow		\checkmark	\leftarrow	4	4	4	p	,	$\frac{1}{7}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow			\&		*	F		${ }^{1}$	F	
Volume (veh/h)	1	0	8	0	0	1	8	506	1	1	893	2
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.75	0.75	0.75	0.65	0.65	0.65	0.91	0.91	0.91	0.93	0.93	0.93
Hourly flow rate (vph)	1	0	11	0	0	2	9	556	1	1	960	2
Pedestrians												
Lane Width (ft)												
Walking Speed (fts)												
Percent Blockage												
Right turn flare (veh)												
Median type								TWLTL			TWLTL	
Median storage veh)								2			2	
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	1539	1538	961	1547	1539	557	962			557		
$\mathrm{vC1}$, stage 1 conf vol	963	963		574	574							
vC2, stage 2 conf vol	575	575		973	965							
vCu , unblocked vol	1539	1538	961	1547	1539	557	962			557		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	6.1	5.5		6.1	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	100	97	100	100	100	99			100		
cM capacity (veh/h)	267	288	311	252	283	530	715			1014		
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1	NB 2	SB 1	SB 2					
Volume Total	1	11	2	9	557	1	962					
Volume Left	1	0	0	9	0	1	0					
Volume Right	0	11	2	0	1	0	2					
cSH	267	311	530	715	1700	1014	1700					
Volume to Capacity	0.00	0.03	0.00	0.01	0.33	0.00	0.57					
Queue Length 95th (ft)	0	3	0	1	0	0	0					
Control Delay (s)	18.6	17.0	11.8	10.1	0.0	8.6	0.0					
Lane LOS	C	C	B	B		A						
Approach Delay (s)	17.2		11.8	0.2		0.0						
Approach LOS	C		B									
Intersection Summary												
Average Delay			0.2									
Intersection Capacity Utilization			57.1\%		CU Level o	f Service			B			
Analysis Period (min)			15									

	$\stackrel{ }{ }$	\rightarrow	7	\checkmark	\leftarrow	4	4	\dagger	1	\downarrow	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow					\%	F		\%	F	
Volume (veh/h)	21	1	100	0	0	0	122	838	26	5	762	35
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.82	0.82	0.82	0.92	0.92	0.92	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	26	1	122	0	0	0	128	882	27	5	802	37
Pedestrians												
Lane Width (ft)												
Walking Speed (fts)												
Percent Blockage												
Right turn flare (veh)												
Median type								TWLTL			TWLTL	
Median storage veh)								2			2	
Upstream signal (ft)												
pX, platoon unblocked												
VC, conflicting volume	1970	1997	821	2088	2002	896	839			909		
$\mathrm{vC1}$, stage 1 conf vol	831	831		1153	1153							
$\mathrm{vC2}$, stage 2 conf vol	1139	1166		935	849							
vCu, unblocked vol	1970	1997	821	2088	2002	896	839			909		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)	6.1	5.5		6.1	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	85	99	67	100	100	100	84			99		
cM capacity (veh/h)	173	190	375	77	170	339	796			749		
Direction, Lane \#	EB 1	NB 1	NB 2	SB 1	SB 2							
Volume Total	149	128	909	5	839							
Volume Left	26	128	0	5	0							
Volume Right	122	0	27	0	37							
cSH	310	796	1700	749	1700							
Volume to Capacity	0.48	0.16	0.53	0.01	0.49							
Queue Length 95th (ft)	62	14	0	1	0							
Control Delay (s)	26.9	10.4	0.0	9.8	0.0							
Lane LOS	D	B		A								
Approach Delay (s)	26.9	1.3		0.1								
Approach LOS	D											
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utilization			66.4\%		CU Level	Service			C			
Analysis Period (min)			15									

Intersection: 1003: M-22 \& Cherry Bend Rd/Marina Village Dr

Movement	EB	EB	WB	NB	NB	NB	SB	SB
Directions Served	L	TR	L	L	T	R	T	R
Maximum Queue (ft)	34	174	50	98	108	11	146	7
Average Queue (ft)	5	89	11	32	34	1	66	0
95th Queue (ft)	25	151	36	70	87	5	127	3
Link Distance (ft)		761			732		826	
Upstream Blk Time (\%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	135		75	130		130		250
Storage Blk Time (\%)		2	0	0	0		0	

Intersection: 1005: M-72/22/M-22 \& M-72

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	L	T	T	TR
Maximum Queue (ft)	52	77	963	973	339	353
Average Queue (ft)	27	36	893	801	297	307
95th Queue (ft)	42	58	1110	1295	352	363
Link Distance (ft)	27	27	929	929	309	309
Upstream Blk Time (\%)	39	27	77	69	15	20
Queuing Penalty (veh)	116	79	0	0	71	94
Storage Bay Dist (ft)						

Intersection: 9001: M-22 \& Pico Dr

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	29	30
Average Queue (ft)	5	1
95th Queue (ft)	22	12
Link Distance (ft)	400	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		50
Storage Bay Dist (ft)		0
Storage Blk Time (\%)	0	

Intersection: 9002: M-22 \& Grandview Rd/marina entry

Movement	EB	NB	SB
Directions Served	LTR	L	TR
Maximum Queue (ft)	130	44	15
Average Queue (ft)	46	11	1
95th Queue (ft)	97	36	9
Link Distance (ft)	709		139
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		100	0
Storage Blk Time (\%)			0

Intersection: 9003: M-22 \& Brewery Creek/museum dr

Movement	EB	EB	WB	NB	SB
Directions Served	L	TR	LTR	L	L
Maximum Queue (ft)	6	34	26	27	5
Average Queue (ft)	0	6	2	4	0
95th Queue (ft)	4	25	13	18	4
Link Distance (ft)	481	481	121		
Upstream Blk Time (\%)					
Queuing Penalty (veh)				100	100
Storage Bay Dist (ft)					

Intersection: 9004: M-22 \& Carter Rd

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	77	46
Average Queue (ft)	30	9
95th Queue (ft)	56	33
Link Distance (ft)	1346	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		100
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 9006: BAY ST \& M-72

Movement	EB	EB	WB	NB
Directions Served	T	TR	LT	LR
Maximum Queue (ft)	117	283	52	209
Average Queue (ft)	40	95	31	81
95th Queue (ft)	93	196	42	174
Link Distance (ft)	663	663	27	282
Upstream Blk Time (\%)			10	1
Queuing Penalty (veh)			21	0
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Zone Summary

Zone wide Queuing Penalty: 383

Intersection: 1003: M-22 \& Cherry Bend Rd/Marina Village Dr

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	TR	L	TR	L	T	R	L	T	R
Maximum Queue (ft)	43	164	83	38	146	217	23	15	157	8
Average Queue (ft)	15	74	36	8	60	75	4	1	63	1
95th Queue (ft)	42	133	69	31	117	160	15	9	126	4
Link Distance (ft)		761		209		732			826	
Upstream Blk Time (\%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	135		75		130		130	205		250
Storage Blk Time (\%)		1	2		1	1			0	
Queuing Penalty (veh)		0	0		6	2			0	

Intersection: 1005: M-72/22/M-22 \& M-72

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	L	T	T	TR
Maximum Queue (ft)	54	59	956	983	312	316
Average Queue (ft)	31	32	871	810	215	224
95th Queue (ft)	43	48	1107	1228	291	309
Link Distance (ft)	27	27	929	929	309	309
Upstream Blk Time (\%)	74	30	50	51	0	0
Queuing Penalty (veh)	212	86	0	0	0	2
Storage Bay Dist (ft)						

Intersection: 9001: M-22 \& Pico Dr

Movement	EB	NB	NB
Directions Served	LR	L	T
Maximum Queue (ft)	47	38	6
Average Queue (ft)	12	10	0
95th Queue (ft)	37	34	5
Link Distance (ft)	400		139
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		50	
Storage Blk Time (\%)		0	
Queuing Penalty (veh)		1	

Intersection: 9002: M-22 \& Grandview Rd/marina entry

Movement	EB	NB	SB	SB
Directions Served	LTR	L	L	TR
Maximum Queue (ft)	159	76	26	26
Average Queue (ft)	62	35	2	2
95th Queue (ft)	120	62	15	13
Link Distance (ft)	709			139
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		100	50	
Storage Blk Time (\%)		0	0	0
Queuing Penalty (veh)		0	0	0

Intersection: 9003: M-22 \& Brewery Creek/museum dr

Movement	EB	EB	WB	NB	SB
Directions Served	L	TR	LTR	L	L
Maximum Queue (ft)	21	39	65	32	28
Average Queue (ft)	1	14	18	6	4
95th Queue (ft)	10	36	50	25	20
Link Distance (ft)	481	481	121		
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)					
Storage Blk Time (\%)					

Intersection: 9004: M-22 \& Carter Rd

Movement	EB	NB	SB
Directions Served	LR	L	TR
Maximum Queue (ft)	221	74	4
Average Queue (ft)	96	24	0
95th Queue (ft)	231	55	3
Link Distance (ft)	1346		1243
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		100	
Storage Blk Time (\%)	0		
Queuing Penalty (veh)		1	

Intersection: 9006: BAY ST \& M-72

Movement	EB	EB	WB	NB
Directions Served	T	TR	LT	LR
Maximum Queue (ft)	209	214	44	309
Average Queue (ft)	105	80	24	283
95th Queue (ft)	176	165	46	350
Link Distance (ft)	663	663	27	282
Upstream Blk Time (\%)			7	88
Queuing Penalty (veh)			19	0
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Zone Summary

Zone wide Queuing Penalty: 329

c Critical Lane Group

Intersection: 1005: M-72/22/M-22 \& M-72

Movement	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	R	L	L	T	T	TR
Maximum Queue (ft)	40	84	498	451	250	323	334
Average Queue (ft)	28	36	303	261	127	225	232
95th Queue (ft)	36	58	512	476	219	317	334
Link Distance (ft)	21	21	929	929	929	310	310
Upstream Blk Time (\%)	56	30				1	2
Queuing Penalty (veh)	164	88				3	7
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							

Intersection: 1005: M-72/22/M-22 \& M-72

Movement	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	R	L	L	T	T	TR
Maximum Queue (ft)	43	56	255	469	769	318	315
Average Queue (ft)	28	34	155	227	418	216	220
95th Queue (ft)	36	47	244	446	842	292	300
Link Distance (ft)	21	21			929	310	310
Upstream Blk Time (\%)	66	32			3	0	0
Queuing Penalty (veh)	190	91			0	1	1
Storage Bay Dist (ft)			300	300			
Storage Blk Time (\%)			0	0	13		
Queuing Penalty (veh)			0	5	52		

DETAILED SYNCHRO ANALYSIS OF PROJECTED 2026 CONDITIONS

C Critical Lane Group

C Critical Lane Group

AM PEAK

AM PEAK

C Critical Lane Group

c Critical Lane Group

	4	\rightarrow	\checkmark	7	4	4	4	\dagger	\%	+	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个			$\$$		*	\uparrow		${ }^{7}$	4	7
Traffic Volume (veh/h)	137	0	191	13	0	7	193	1179	34	12	1064	149
Future Volume (Veh/h)	137	0	191	13	0	7	193	1179	34	12	1064	149
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.65	0.65	0.65	0.71	0.71	0.71	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	211	0	294	18	0	10	203	1241	36	13	1120	157
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								TWLTL			TWLTL	
Median storage veh)								2			2	
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	2803	2829	1120	3105	2968	1259	1277			1277		
vC 1 , stage 1 conf vol	1146	1146		1665	1665							
vC 2 , stage 2 conf vol	1657	1683		1440	1303							
vCu , unblocked vol	2803	2829	1120	3105	2968	1259	1277			1277		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	6.1	5.5		6.1	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	0	100	0	0	100	95	63			98		
cM capacity (veh/h)	57	75	251	0	21	208	544			544		
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3				
Volume Total	211	294	28	203	1277	13	1120	157				
Volume Left	211	0	18	203	0	13	0	0				
Volume Right	0	294	10	0	36	0	0	157				
cSH	57	251	0	544	1700	544	1700	1700				
Volume to Capacity	3.70	1.17	Err	0.37	0.75	0.02	0.66	0.09				
Queue Length 95th (ft)	Err	338	Err	43	0	2	0	0				
Control Delay (s)	Err	152.6	Err	15.5	0.0	11.8	0.0	0.0				
Lane LOS	F	F	F	C		B						
Approach Delay (s)	4266.6		Err	2.1		0.1						
Approach LOS	F		F									
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utilization			90.0\%		U Level	Service			E			
Analysis Period (min)			15									

C Critical Lane Group

C Critical Lane Group

AGENDA

M-22/Greilickville Subarea Corridor Analysis
 Stakeholder Meeting
 Wednesday, March 2, 2016 6:30-8:00 pm
 Elmwood Township Hall

1. Introductions
2. Setting the Stage - Subarea Plan
3. Why a traffic study?
4. Recap of Study Objectives
5. Existing Conditions Analysis Findings (June 2015 Database)
6. Existing Conditions - August 2015
 Observations
7. Preliminary Access Management Recommendations
8. Preliminary 2025 Future Conditions Analyses Findings \& Recommendations
9. Alternative Alignment?
10. Questions/Answers
11. Next

Steps/Schedule

Contacts:
Progressive AE: Pete LaMourie Elmwood Township: Beckett-Raeder:

Jack Kelly
John Iacoangeli
(616) 361-2664, lamourie@progressiveae.com
(231) 946-0921, supervisor@elmwoodtownship.net
(734) 239-6602, jri@bria2.com

Beckett\&Raeder

AGENDA

M-22/Greilickville Subarea Corridor Analysis
Stakeholder Meeting
Wednesday, March 2, 2016 6:30-8:00 pm
Elmwood Township Hall

1. Introductions
2. Setting the Stage - Subarea Plan
3. Why a traffic study?
4. Recap of Study Objectives
5. Existing Conditions Analysis Findings (June 2015 Database)
6. Existing Conditions - August 2015
 Observations
7. Preliminary Access Management Recommendations
8. Preliminary 2026 Future Conditions Analyses Findings \& Recommendations
9. Additional Thoughts?
10. Questions/Answers
11. Next Steps/Schedule

Community Master Plan September 1999

- Key focus areas

1) Greilickville,
2) The M-22 Corridor,
3) the Timberlee Resort area, and 4) the rural portion of the Township.

Waterfront District Plan

 January 2012- Examine the waterfront highway corridor and develop a set of recommendations to transform the area by encouraging new development, improving pedestrian safety, and creating a more village like atmosphere for the area.
- Prepare a site plan for the township marina property along M-22 that illustrates improvements to boater facilities, clearer use patterns for visitors and boaters, and Integration of the facIlitles Into the adJacent park and community.

Greilickville Sub Area Plan

 November 2012- A redevelopment master plan which is community-driven
- A realistic vision for the corridor which can be brought to fruition over time.
- A strategy for Implementation with specific measurable benchmarks.
- A basis for future zoning decisions.
- A guide for shaping future private and public development by setting priorities for future investments in recreational and/ or road Infrastructure Improvements.

Community Survey

February 2014

- 74\% Year-round residents; 49\% over 65 years of age
- Elmwood Township should advocate for non-motorized infrastructure (bike lanes, sidewalks, crosswalks) along M-22
- 34% would like to see Brewery Creek used for mixed development
- Residents would like commercial focused on M-22 between M-72 and Cherry Bend Road
- 75\% agreed that Elmwood Township's growth and development is heading the right direction

Updates
 March 2016

- Adopted a Planned Development (PD) provision in the zoning ordinance to encourage mixed use redevelopment per the Sub Area Plan
- Redevelopment of the Norris Elementary School - Grand Traverse Regional Arts Center (PD)
- Acquisition of the TCPL coal dock by Rotary Charities
- Redevelopment of Rotary Camps and Services Campus
- Preliminary engineering at the marina
- The Leelanau Flats (Moorings) Residential project

M-22 Traffic Study Background and Tasks

- Study scope defined by Elmwood Township, MDOT, and others
- Chose June baseline to reflect busy but not peak summer conditions
- Identify/confirm existing conditions and issues
- Identify retrofit access management improvement opportunities
- Project future traffic volumes and related traffic conditions
- Identify potential future transportation/ roadway improvements
- Township Marina/Park subarea
- M-72/M-22 subarea

August 2015 Observations Grandview Rd. area

August 2015 Observations

M-72/M-22 area

$x \mathrm{x}, \mathrm{xxx}$

AVERAGE DAILY TRAFFIC VOLUME

M-22 CORRIDOR STUDY

 PRELIMINARY ACCESS MANAGEMENT RECOMMENDATIONS

Preliminary Conclusions

- M-22 is reaching traffic saturation point for a 3-lane roadway such that new signals or single lane roundabouts will not function "acceptably."
- Other means of intermittent pedestrian crossings will need to be pursued in the short-term, like short midblock raised medians as shown
- No simple solutions to egress issues in Township marina area
- Any improvements will likely require significant percentage from local funding
- Need to continue to push/pursue multimodal improvements
- M-72/M-22 does/will need significant improvements - MDOT to study further

Next Steps

Pursue discussions with MDOT and road agencies regarding potential improvements
Refine best near-term solution for Township marina/park subarea
Finalize analyses and complete study report
Present at public meeting

$$
\begin{aligned}
& \text { Parcel Number } \\
& \text { Acreage } \\
& \text { Square Footage } \\
& \text { \% Reduction (Site) } \\
& \text { \% Reduction (Inte } \\
& \text { Net Development } \\
& \text { Floor Area Ratio (I } \\
& \text { Level } 1 \\
& \text { Level } 2 \\
& \text { Level } 3 \\
& \text { Level } 1 \text { (Retail / O } \\
& \text { Level } 1 \text { (Residenti }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Level } 1 \text { (Residential; } 1,500 \text { sfat per du) } \\
& \text { Level } 2 \text { (Residential; } 1,500 \text { sfat per du) } \\
& \text { level } 3 \text { (Residential; } 1,500 \text { sfgt per du) }
\end{aligned}
$$

M-22 Subarea AMP

Recommended Access Approval Procedure (sample)
for Site Plans, Special Land Uses, Subdivisions and Site Condominiums

